BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

907 related articles for article (PubMed ID: 23357756)

  • 21. Implications of NAD
    Kang BE; Choi JY; Stein S; Ryu D
    Eur J Clin Invest; 2020 Oct; 50(10):e13334. PubMed ID: 32594513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIRT1/PARP-1 functional interplay.
    Sassone-Corsi P
    Cell Cycle; 2009 Jun; 8(11):1649. PubMed ID: 19377281
    [No Abstract]   [Full Text] [Related]  

  • 23. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PARP-1 inhibition does not restore oxidant-mediated reduction in SIRT1 activity.
    Caito S; Hwang JW; Chung S; Yao H; Sundar IK; Rahman I
    Biochem Biophys Res Commun; 2010 Feb; 392(3):264-70. PubMed ID: 20060806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NAD
    Saville KM; Clark J; Wilk A; Rogers GD; Andrews JF; Koczor CA; Sobol RW
    DNA Repair (Amst); 2020 Sep; 93():102930. PubMed ID: 33087267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies.
    Virág L
    Curr Vasc Pharmacol; 2005 Jul; 3(3):209-14. PubMed ID: 16026317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair.
    Van Meter M; Mao Z; Gorbunova V; Seluanov A
    Aging (Albany NY); 2011 Sep; 3(9):829-35. PubMed ID: 21946623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interplay between compartmentalized NAD
    Cohen MS
    Genes Dev; 2020 Mar; 34(5-6):254-262. PubMed ID: 32029457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.
    Bai P; Cantó C; Oudart H; Brunyánszki A; Cen Y; Thomas C; Yamamoto H; Huber A; Kiss B; Houtkooper RH; Schoonjans K; Schreiber V; Sauve AA; Menissier-de Murcia J; Auwerx J
    Cell Metab; 2011 Apr; 13(4):461-468. PubMed ID: 21459330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ginsenoside Rb1 Attenuates High Glucose-Induced Oxidative Injury via the NAD-PARP-SIRT Axis in Rat Retinal Capillary Endothelial Cells.
    Fan C; Ma Q; Xu M; Qiao Y; Zhang Y; Li P; Bi Y; Tang M
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31590397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1.
    Rajamohan SB; Pillai VB; Gupta M; Sundaresan NR; Birukov KG; Samant S; Hottiger MO; Gupta MP
    Mol Cell Biol; 2009 Aug; 29(15):4116-29. PubMed ID: 19470756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tankyrase-1 overexpression reduces genotoxin-induced cell death by inhibiting PARP1.
    Yeh TY; Sbodio JI; Nguyen MT; Meyer TN; Lee RM; Chi NW
    Mol Cell Biochem; 2005 Aug; 276(1-2):183-92. PubMed ID: 16132700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage.
    Kolthur-Seetharam U; Dantzer F; McBurney MW; de Murcia G; Sassone-Corsi P
    Cell Cycle; 2006 Apr; 5(8):873-7. PubMed ID: 16628003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.
    Gariani K; Ryu D; Menzies KJ; Yi HS; Stein S; Zhang H; Perino A; Lemos V; Katsyuba E; Jha P; Vijgen S; Rubbia-Brandt L; Kim YK; Kim JT; Kim KS; Shong M; Schoonjans K; Auwerx J
    J Hepatol; 2017 Jan; 66(1):132-141. PubMed ID: 27663419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms governing PARP expression, localization, and activity in cells.
    Sanderson DJ; Cohen MS
    Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):541-554. PubMed ID: 32962438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
    Heer CD; Sanderson DJ; Voth LS; Alhammad YMO; Schmidt MS; Trammell SAJ; Perlman S; Cohen MS; Fehr AR; Brenner C
    J Biol Chem; 2020 Dec; 295(52):17986-17996. PubMed ID: 33051211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.
    Ma Y; Nie H; Chen H; Li J; Hong Y; Wang B; Wang C; Zhang J; Cao W; Zhang M; Xu Y; Ding X; Yin SK; Qu X; Ying W
    Curr Med Chem; 2015; 22(10):1239-47. PubMed ID: 25666794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer.
    Navas LE; Carnero A
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging.
    Altmeyer M; Hottiger MO
    Aging (Albany NY); 2009 May; 1(5):458-69. PubMed ID: 20157531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase.
    Zhang T; Berrocal JG; Yao J; DuMond ME; Krishnakumar R; Ruhl DD; Ryu KW; Gamble MJ; Kraus WL
    J Biol Chem; 2012 Apr; 287(15):12405-16. PubMed ID: 22334709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.