These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 23357904)
1. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro. Duryea AP; Roberts WW; Cain CA; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904 [TBL] [Abstract][Full Text] [Related]
2. In vitro comminution of model renal calculi using histotripsy. Duryea AP; Maxwell AD; Roberts WW; Xu Z; Hall TL; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):971-80. PubMed ID: 21622053 [TBL] [Abstract][Full Text] [Related]
3. Histotripsy erosion of model urinary calculi. Duryea AP; Hall TL; Maxwell AD; Xu Z; Cain CA; Roberts WW J Endourol; 2011 Feb; 25(2):341-4. PubMed ID: 21091223 [TBL] [Abstract][Full Text] [Related]
4. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. Zhou Y; Cocks FH; Preminger GM; Zhong P J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809 [TBL] [Abstract][Full Text] [Related]
5. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Zhu S; Cocks FH; Preminger GM; Zhong P Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703 [TBL] [Abstract][Full Text] [Related]
6. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones. Duryea AP; Roberts WW; Cain CA; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682 [TBL] [Abstract][Full Text] [Related]
7. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study. Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846 [TBL] [Abstract][Full Text] [Related]
8. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy. Zhang Y; Nault I; Mitran S; Iversen ES; Zhong P Ultrasound Med Biol; 2016 Nov; 42(11):2662-2675. PubMed ID: 27515177 [TBL] [Abstract][Full Text] [Related]
9. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. Smith N; Zhong P J Biomech; 2012 Oct; 45(15):2520-5. PubMed ID: 22935690 [TBL] [Abstract][Full Text] [Related]
10. Technological innovations in shock wave lithotripsy. Mosquera Seoane L; Ortiz Salvador JB; Budia Alba A; Perez Fentes DA Actas Urol Esp (Engl Ed); 2024; 48(1):105-110. PubMed ID: 37858618 [TBL] [Abstract][Full Text] [Related]
11. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms. Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048 [No Abstract] [Full Text] [Related]
12. Impact of stone characteristics on cavitation in burst wave lithotripsy. Hunter C; Cunitz B; Dunmire B; Bailey M; Randad A; Kreider W; Maxwell AD; Sorensen MD; Williams JC Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612739 [TBL] [Abstract][Full Text] [Related]
13. Turbulent water coupling in shock wave lithotripsy. Lautz J; Sankin G; Zhong P Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027 [TBL] [Abstract][Full Text] [Related]
14. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound. Wang JC; Zhou Y Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067 [TBL] [Abstract][Full Text] [Related]
15. Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy. Vlaisavljevich E; Aydin O; Durmaz YY; Lin KW; Fowlkes B; Xu Z; ElSayed ME Ultrasound Med Biol; 2016 Apr; 42(4):931-46. PubMed ID: 26774470 [TBL] [Abstract][Full Text] [Related]
16. A heuristic model of stone comminution in shock wave lithotripsy. Smith NB; Zhong P J Acoust Soc Am; 2013 Aug; 134(2):1548-58. PubMed ID: 23927195 [TBL] [Abstract][Full Text] [Related]
17. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163 [TBL] [Abstract][Full Text] [Related]
18. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy. Dogan HS; Altan M; Citamak B; Bozaci AC; Karabulut E; Tekgul S J Pediatr Urol; 2015 Apr; 11(2):84.e1-6. PubMed ID: 25812469 [TBL] [Abstract][Full Text] [Related]
19. Focused Ultrasound and Lithotripsy. Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335 [TBL] [Abstract][Full Text] [Related]