These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 23357904)
21. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. Zhong P; Cocks FH; Cioanta I; Preminger GM J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384 [TBL] [Abstract][Full Text] [Related]
22. The role of energy density and acoustic cavitation in shock wave lithotripsy. Loske AM Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511 [TBL] [Abstract][Full Text] [Related]
23. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. Lin KW; Kim Y; Maxwell AD; Wang TY; Hall TL; Xu Z; Fowlkes JB; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):251-65. PubMed ID: 24474132 [TBL] [Abstract][Full Text] [Related]
24. High intensity focused ultrasound lithotripsy with cavitating microbubbles. Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448 [TBL] [Abstract][Full Text] [Related]
25. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. Zhong P; Zhou Y J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829 [TBL] [Abstract][Full Text] [Related]
26. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence. Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629 [TBL] [Abstract][Full Text] [Related]
27. Enhanced shockwave lithotripsy with active cavitation mitigation. Alavi Tamaddoni H; Roberts WW; Hall TL J Acoust Soc Am; 2019 Nov; 146(5):3275. PubMed ID: 31795655 [TBL] [Abstract][Full Text] [Related]
28. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy. Fernández F; Fernández G; Loske AM J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160 [TBL] [Abstract][Full Text] [Related]
29. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy. Wang JC; Zhou Y Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016 [TBL] [Abstract][Full Text] [Related]
30. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Canseco G; de Icaza-Herrera M; Fernández F; Loske AM Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398 [TBL] [Abstract][Full Text] [Related]
31. High-frequency shock wave lithotripsy: stone comminution and evaluation of renal parenchyma injury in a porcine ex-vivo model. Rassweiler-Seyfried MC; Mayer J; Goldenstedt C; Storz R; Marlinghaus E; Heine G; Alken P; Rassweiler JJ World J Urol; 2023 Jul; 41(7):1929-1934. PubMed ID: 37284842 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model. Maxwell AD; Wang YN; Kreider W; Cunitz BW; Starr F; Lee D; Nazari Y; Williams JC; Bailey MR; Sorensen MD J Endourol; 2019 Oct; 33(10):787-792. PubMed ID: 31016998 [No Abstract] [Full Text] [Related]
33. Effects of pulse repetition frequency on bubble cloud characteristics and ablation in single-cycle histotripsy. Simon A; Edsall C; Maxwell A; Vlaisavljevich E Phys Med Biol; 2024 Jan; 69(2):. PubMed ID: 38041873 [No Abstract] [Full Text] [Related]
34. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy. Xu Z; Raghavan M; Hall TL; Chang CW; Mycek MA; Fowlkes JB; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2091-101. PubMed ID: 18019247 [TBL] [Abstract][Full Text] [Related]