These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23357914)

  • 21. The determination of the optimal length of crystal blanks in quartz crystal resonators.
    Wang J; Zhao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2023-30. PubMed ID: 16422414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency interferences of two-unit quartz resonator arrays excited by lateral electric fields.
    Ma T; Zhang Q; Yan L; Xie C; Wang J; Du J; Huang J; Huang B; Zhang C
    J Acoust Soc Am; 2018 Nov; 144(5):2971. PubMed ID: 30522298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass-frequency influence surface, mode shapes, and frequency spectrum of a rectangular AT-cut quartz plate.
    Yong YK; Stewart JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):67-73. PubMed ID: 18267559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency shifts in plate crystal resonators induced by electric, magnetic, or mechanical fields in surface films.
    Liu N; Yang J; Hu Y; Chen X; Jiang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2588-95. PubMed ID: 23443695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The fifth-order overtone vibrations of quartz crystal plates with corrected higher-order Mindlin plate equations.
    Wang J; Wu R; Yang L; Du J; Ma T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2278-91. PubMed ID: 23143577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the inaccuracy of using Mindlin's first-order plate theory for calculating the motional capacitance of a thickness-shear resonator.
    Hu H; Hu Y; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):7-8. PubMed ID: 19213625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thickness-shear and thickness-twist vibrations of an AT-cut quartz mesa resonator.
    He H; Liu J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2050-5. PubMed ID: 21989869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes.
    Lee PY; Guo X
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):358-65. PubMed ID: 18267596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid.
    Sun J; Du J; Yang J; Wang J
    Ultrasonics; 2012 Jan; 52(1):133-7. PubMed ID: 21906772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-frequency vibration of beveled crystal plates by using subregional geometric fitting method.
    Sun Z; Wang Z; Li Z; Guo Y; Huang B
    Sci Rep; 2024 Jul; 14(1):17131. PubMed ID: 39054382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SC-Cut Quartz Resonators for Dynamic Liquid Viscosity Measurements.
    Ju S; Zhang C; Zahedinejad P; Zhang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3616-3623. PubMed ID: 34255627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lee plate equations for electroded quartz crystal plates with the consideration of electrode density and stiffness.
    Wang J; Chen G; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):503-7. PubMed ID: 18334357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Governing equations for a piezoelectric plate with graded properties across the thickness.
    Lee PY; Yu JD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):236-50. PubMed ID: 18244175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory.
    Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1042-6. PubMed ID: 18238510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator.
    Wang W; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1192-8. PubMed ID: 25004481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.
    Wang B; Qian Z; Li N; Sarraf H
    Ultrasonics; 2016 Jan; 64():62-8. PubMed ID: 26254981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.