BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 23357952)

  • 21. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae.
    Lettier G; Feng Q; de Mayolo AA; Erdeniz N; Reid RJ; Lisby M; Mortensen UH; Rothstein R
    PLoS Genet; 2006 Nov; 2(11):e194. PubMed ID: 17096599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1.
    Pohl TJ; Nickoloff JA
    Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of Rad52 recombination activity by double-strand break-induced SUMO modification.
    Sacher M; Pfander B; Hoege C; Jentsch S
    Nat Cell Biol; 2006 Nov; 8(11):1284-90. PubMed ID: 17013376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination.
    Muñoz-Galván S; López-Saavedra A; Jackson SP; Huertas P; Cortés-Ledesma F; Aguilera A
    Nucleic Acids Res; 2013 Feb; 41(3):1669-83. PubMed ID: 23254329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hst3 is regulated by Mec1-dependent proteolysis and controls the S phase checkpoint and sister chromatid cohesion by deacetylating histone H3 at lysine 56.
    Thaminy S; Newcomb B; Kim J; Gatbonton T; Foss E; Simon J; Bedalov A
    J Biol Chem; 2007 Dec; 282(52):37805-14. PubMed ID: 17977840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination.
    Shi I; Hallwyl SC; Seong C; Mortensen U; Rothstein R; Sung P
    J Biol Chem; 2009 Nov; 284(48):33275-84. PubMed ID: 19812039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
    Cousineau I; Abaji C; Belmaaza A
    Cancer Res; 2005 Dec; 65(24):11384-91. PubMed ID: 16357146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rtt107 phosphorylation promotes localisation to DNA double-stranded breaks (DSBs) and recombinational repair between sister chromatids.
    Ullal P; Vilella-Mitjana F; Jarmuz A; Aragón L
    PLoS One; 2011; 6(5):e20152. PubMed ID: 21647453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct roles of Mus81, Yen1, Slx1-Slx4, and Rad1 nucleases in the repair of replication-born double-strand breaks by sister chromatid exchange.
    Muñoz-Galván S; Tous C; Blanco MG; Schwartz EK; Ehmsen KT; West SC; Heyer WD; Aguilera A
    Mol Cell Biol; 2012 May; 32(9):1592-603. PubMed ID: 22354996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.
    Martini E; Borde V; Legendre M; Audic S; Regnault B; Soubigou G; Dujon B; Llorente B
    PLoS Genet; 2011 Sep; 7(9):e1002305. PubMed ID: 21980306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules.
    Nimonkar AV; Sica RA; Kowalczykowski SC
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3077-82. PubMed ID: 19204284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rad52 SUMOylation affects the efficiency of the DNA repair.
    Altmannova V; Eckert-Boulet N; Arneric M; Kolesar P; Chaloupkova R; Damborsky J; Sung P; Zhao X; Lisby M; Krejci L
    Nucleic Acids Res; 2010 Aug; 38(14):4708-21. PubMed ID: 20371517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Rad51-independent pathway promotes single-strand template repair in gene editing.
    Gallagher DN; Pham N; Tsai AM; Janto NV; Choi J; Ira G; Haber JE
    PLoS Genet; 2020 Oct; 16(10):e1008689. PubMed ID: 33057349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis.
    Goldfarb T; Lichten M
    PLoS Biol; 2010 Oct; 8(10):e1000520. PubMed ID: 20976044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus.
    Torres-Rosell J; Sunjevaric I; De Piccoli G; Sacher M; Eckert-Boulet N; Reid R; Jentsch S; Rothstein R; Aragón L; Lisby M
    Nat Cell Biol; 2007 Aug; 9(8):923-31. PubMed ID: 17643116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.
    Kadyrova LY; Mertz TM; Zhang Y; Northam MR; Sheng Z; Lobachev KS; Shcherbakova PV; Kadyrov FA
    PLoS Genet; 2013 Oct; 9(10):e1003899. PubMed ID: 24204308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. N-terminal acetyltransferase NatB regulates Rad51-dependent repair of double-strand breaks in Saccharomyces cerevisiae.
    Sugaya N; Tanaka S; Keyamura K; Noda S; Akanuma G; Hishida T
    Genes Genet Syst; 2023 Sep; 98(2):61-72. PubMed ID: 37331807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RPA interacts with Rad52 to promote meiotic crossover and noncrossover recombination.
    Joo JH; Hong S; Higashide MT; Choi EH; Yoon S; Lee MS; Kang HA; Shinohara A; Kleckner N; Kim KP
    Nucleic Acids Res; 2024 Apr; 52(7):3794-3809. PubMed ID: 38340339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rad51 protein controls Rad52-mediated DNA annealing.
    Wu Y; Kantake N; Sugiyama T; Kowalczykowski SC
    J Biol Chem; 2008 May; 283(21):14883-92. PubMed ID: 18337252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.