These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23358938)

  • 1. The use of a bone-anchored device as a hard-wired conduit for transmitting EMG signals from implanted muscle electrodes.
    Al-Ajam Y; Lancashire H; Pendegrass C; Kang N; Dowling RP; Taylor SJ; Blunn G
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1654-9. PubMed ID: 23358938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording of electric signal passing through a pylon in direct skeletal attachment of leg prostheses with neuromuscular control.
    Pitkin M; Cassidy C; Muppavarapu R; Edell D
    IEEE Trans Biomed Eng; 2012 May; 59(5):1349-53. PubMed ID: 22345523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hard-wired Epimysial Recordings from Normal and Reinnervated Muscle Using a Bone-anchored Device.
    Lancashire HT; Al Ajam Y; Dowling RP; Pendegrass CJ; Blunn GW
    Plast Reconstr Surg Glob Open; 2019 Sep; 7(9):e2391. PubMed ID: 31741811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems.
    Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumentation for ENG and EMG recordings in FES systems.
    Nikolić ZM; Popović DB; Stein RB; Kenwell Z
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):703-6. PubMed ID: 7927392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions.
    Sacco IC; Gomes AA; Otuzi ME; Pripas D; Onodera AN
    J Neurosci Methods; 2009 May; 180(1):133-7. PubMed ID: 19427540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pass filtering surface EMG in an attempt to better represent the signals detected at the intramuscular level.
    Brown SH; Brookham RL; Dickerson CR
    Muscle Nerve; 2010 Feb; 41(2):234-9. PubMed ID: 19722252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel electrode design for chronic recording of electromyographic activity.
    Shafford HL; Strittmatter RR; Schadt JC
    J Neurosci Methods; 2006 Sep; 156(1-2):228-30. PubMed ID: 16621006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Detection of surface EMG signal using active electrode].
    He Q; Peng C; Wu B; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):488-90. PubMed ID: 14565020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantable multichannel wireless electromyography for prosthesis control.
    McDonnall D; Hiatt S; Smith C; Guillory KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1350-3. PubMed ID: 23366149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Testing of an Implantable Wireless Telemetry System for Long-Term Electromyography Recordings in Large Animals.
    Kneisz L; Unger E; Lanmüller H; Mayr W
    Artif Organs; 2015 Oct; 39(10):897-902. PubMed ID: 26471141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prosthesis Control with an Implantable Multichannel Wireless Electromyography System for High-Level Amputees: A Large-Animal Study.
    Bergmeister KD; Hader M; Lewis S; Russold MF; Schiestl M; Manzano-Szalai K; Roche AD; Salminger S; Dietl H; Aszmann OC
    Plast Reconstr Surg; 2016 Jan; 137(1):153-162. PubMed ID: 26710019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of surface EMG signals between electrode types, interelectrode distances and electrode orientations in isometric exercise of the erector spinae muscle.
    Zedka M; Kumar S; Narayan Y
    Electromyogr Clin Neurophysiol; 1997 Oct; 37(7):439-47. PubMed ID: 9402434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3-Mbps, 802.11g-Based EMG Recording System With Fully Implantable 5-Electrode EMG Acquisition Device.
    Ng KA; Rusly A; Gammad GGL; Le N; Liu SC; Leong KW; Zhang M; Ho JS; Yoo J; Yen SC
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):889-902. PubMed ID: 32746357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new electrode configuration for recording electromyographic activity in behaving mice.
    Pearson KG; Acharya H; Fouad K
    J Neurosci Methods; 2005 Oct; 148(1):36-42. PubMed ID: 15908013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition of myoelectric signals to control a hand prosthesis with implantable epimysial electrodes.
    Ruff R; Poppendieck W; Gail A; Westendorff S; Russold M; Lewis S; Meiners T; Hoffmann KP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5070-3. PubMed ID: 21096029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proposal for electrical insulation of the electromyographic signal acquisition module.
    Guirro RR; Forti F; Bigaton DR
    Electromyogr Clin Neurophysiol; 2006 Nov; 46(6):355-63. PubMed ID: 17147078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface EMG: the issue of electrode location.
    Mesin L; Merletti R; Rainoldi A
    J Electromyogr Kinesiol; 2009 Oct; 19(5):719-26. PubMed ID: 18829347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.