These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23359037)

  • 21. Quantification of perfusion modes in terms of surplus hemodynamic energy levels in a simulated pediatric CPB model.
    Undar A; Ji B; Lukic B; Zapanta CM; Kunselman AR; Reibson JD; Weiss WJ; Rosenberg G; Myers JL
    ASAIO J; 2006; 52(6):712-7. PubMed ID: 17117064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass.
    Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A
    Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Air-handling capabilities of blood cardioplegia delivery systems in a simulated pediatric model.
    Palanzo D; Guan Y; Wan C; Baer L; Kunselman A; Qiu F; Undar A
    Artif Organs; 2010 Nov; 34(11):950-4. PubMed ID: 21091518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Combined Extracorporeal Life Support and Continuous Renal Replacement Therapy on Hemodynamic Performance and Gaseous Microemboli Handling Ability in a Simulated Neonatal ECLS System.
    Shank KR; Profeta E; Wang S; O'Connor C; Kunselman AR; Woitas K; Myers JL; Ündar A
    Artif Organs; 2018 Apr; 42(4):365-376. PubMed ID: 28940550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model.
    Undar A; Ji B; Kunselman AR; Myers JL
    ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delivery of gaseous microemboli with vacuum-assisted venous drainage during pulsatile and nonpulsatile perfusion in a simulated neonatal cardiopulmonary bypass model.
    Wang S; Baer L; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(4):416-22. PubMed ID: 18645361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Building a Better Neonatal Extracorporeal Life Support Circuit: Comparison of Hemodynamic Performance and Gaseous Microemboli Handling in Different Pump and Oxygenator Technologies.
    Glass K; Trivedi P; Wang S; Woitas K; Kunselman AR; Ündar A
    Artif Organs; 2017 Apr; 41(4):392-400. PubMed ID: 28397410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: an in vitro study.
    Myers GJ; Voorhees C; Haynes R; Eke B
    J Extra Corpor Technol; 2009 Mar; 41(1):20-7. PubMed ID: 19361028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro evaluation of Capiox FX05 and RX05 oxygenators in neonatal cardiopulmonary bypass circuits with varying venous reservoir and vacuum-assisted venous drainage levels.
    Sathianathan S; Nasir R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2020 Jan; 44(1):28-39. PubMed ID: 30512218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow.
    Dodonov M; Milano A; Onorati F; Dal Corso B; Menon T; Ferrarini D; Tessari M; Faggian G; Mazzucco A
    Artif Organs; 2013 Apr; 37(4):357-67. PubMed ID: 23489040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microemboli detection and classification by innovative ultrasound technology during simulated neonatal cardiopulmonary bypass at different flow rates, perfusion modes, and perfusate temperatures.
    Schreiner RS; Rider AR; Myers JW; Ji B; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(3):316-24. PubMed ID: 18496283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles.
    Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R
    Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass.
    Wang S; Woitas K; Clark JB; Myers JL; Undar A
    Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of tubing length on hemodynamics in a simulated neonatal extracorporeal life support circuit.
    Qiu F; Uluer MC; Kunselman A; Clark JB; Myers JL; Undar A
    Artif Organs; 2010 Nov; 34(11):1003-9. PubMed ID: 21092043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microemboli generation, detection and characterization during CPB procedures in neonates, infants, and small children.
    Win KN; Wang S; Undar A
    ASAIO J; 2008; 54(5):486-90. PubMed ID: 18812739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population.
    Preston TJ; Gomez D; Olshove VF; Phillips A; Galantowicz M
    J Extra Corpor Technol; 2009 Dec; 41(4):226-30. PubMed ID: 20092077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemodynamic energy delivery of the pulsatile flow in a simulated pediatric extracorporeal circuit.
    Wang S; Haines N; Undar A
    ASAIO J; 2009; 55(1):96-9. PubMed ID: 19092666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter.
    Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P
    Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC.
    Stanzel RD; Henderson M
    Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.