These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23359221)
1. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. Olatunji O; Das DB; Garland MJ; Belaid L; Donnelly RF J Pharm Sci; 2013 Apr; 102(4):1209-21. PubMed ID: 23359221 [TBL] [Abstract][Full Text] [Related]
2. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems. Cordeiro AS; Tekko IA; Jomaa MH; Vora L; McAlister E; Volpe-Zanutto F; Nethery M; Baine PT; Mitchell N; McNeill DW; Donnelly RF Pharm Res; 2020 Aug; 37(9):174. PubMed ID: 32856172 [TBL] [Abstract][Full Text] [Related]
3. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. Donnelly RF; Garland MJ; Morrow DI; Migalska K; Singh TR; Majithiya R; Woolfson AD J Control Release; 2010 Nov; 147(3):333-41. PubMed ID: 20727929 [TBL] [Abstract][Full Text] [Related]
4. Direct microneedle array fabrication off a photomask to deliver collagen through skin. Kochhar JS; Anbalagan P; Shelar SB; Neo JK; Iliescu C; Kang L Pharm Res; 2014 Jul; 31(7):1724-34. PubMed ID: 24449441 [TBL] [Abstract][Full Text] [Related]
5. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Shu W; Heimark H; Bertollo N; Tobin DJ; O'Cearbhaill ED; Annaidh AN Acta Biomater; 2021 Nov; 135():403-413. PubMed ID: 34492370 [TBL] [Abstract][Full Text] [Related]
6. A new paradigm for numerical simulation of microneedle-based drug delivery aided by histology of microneedle-pierced skin. Han T; Das DB J Pharm Sci; 2015 Jun; 104(6):1993-2007. PubMed ID: 25821048 [TBL] [Abstract][Full Text] [Related]
7. Lidocaine permeation from a lidocaine NaCMC/gel microgel formulation in microneedle-pierced skin: vertical (depth averaged) and horizontal permeation profiles. Nayak A; Short L; Das DB Drug Deliv Transl Res; 2015 Aug; 5(4):372-86. PubMed ID: 25895729 [TBL] [Abstract][Full Text] [Related]
8. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. Davis SP; Landis BJ; Adams ZH; Allen MG; Prausnitz MR J Biomech; 2004 Aug; 37(8):1155-63. PubMed ID: 15212920 [TBL] [Abstract][Full Text] [Related]
9. Modelling insertion behaviour of PVP (Polyvinylpyrrolidone) and PVA (Polyvinyl Alcohol) microneedles. Soorani M; Anjani QK; Larrañeta E; Donnelly RF; Das DB Int J Pharm; 2024 Oct; 664():124620. PubMed ID: 39179007 [TBL] [Abstract][Full Text] [Related]
10. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Garland MJ; Migalska K; Tuan-Mahmood TM; Raghu Raj Singh T; Majithija R; Caffarel-Salvador E; McCrudden CM; McCarthy HO; David Woolfson A; Donnelly RF Int J Pharm; 2012 Sep; 434(1-2):80-9. PubMed ID: 22669101 [TBL] [Abstract][Full Text] [Related]
11. Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design. Lovald S; Berkey C; Pak N; Gorji M; Rau A PDA J Pharm Sci Technol; 2024 Aug; 78(4):518-519. PubMed ID: 39179397 [TBL] [Abstract][Full Text] [Related]
12. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo. Vicente-Pérez EM; Quinn HL; McAlister E; O'Neill S; Hanna LA; Barry JG; Donnelly RF Pharm Res; 2016 Dec; 33(12):3072-3080. PubMed ID: 27633885 [TBL] [Abstract][Full Text] [Related]
13. Additive Manufacturing of Honeybee-Inspired Microneedle for Easy Skin Insertion and Difficult Removal. Chen Z; Lin Y; Lee W; Ren L; Liu B; Liang L; Wang Z; Jiang L ACS Appl Mater Interfaces; 2018 Sep; 10(35):29338-29346. PubMed ID: 30091892 [TBL] [Abstract][Full Text] [Related]
14. Design of three-section microneedle towards low insertion force and high drug delivery amount using the finite element method. Zhang L; Zhu C; Shi J; Zhou Z; Ge D Comput Methods Biomech Biomed Engin; 2024; 27(2):156-166. PubMed ID: 36762916 [TBL] [Abstract][Full Text] [Related]
15. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. Kochhar JS; Quek TC; Soon WJ; Choi J; Zou S; Kang L J Pharm Sci; 2013 Nov; 102(11):4100-8. PubMed ID: 24027112 [TBL] [Abstract][Full Text] [Related]
16. A crossover clinical study to evaluate pain intensity from microneedle insertion in different parts of the oral cavity. Di Carla Santos S; Fávaro-Moreira NC; Abdalla HB; Augusto GGX; Costa YM; Volpato MC; Groppo FC; Gill HS; Franz-Montan M Int J Pharm; 2021 Jan; 592():120050. PubMed ID: 33161036 [TBL] [Abstract][Full Text] [Related]
17. Effect of force of microneedle insertion on the permeability of insulin in skin. Cheung K; Han T; Das DB J Diabetes Sci Technol; 2014 May; 8(3):444-52. PubMed ID: 24876604 [TBL] [Abstract][Full Text] [Related]
18. A proposed model membrane and test method for microneedle insertion studies. Larrañeta E; Moore J; Vicente-Pérez EM; González-Vázquez P; Lutton R; Woolfson AD; Donnelly RF Int J Pharm; 2014 Sep; 472(1-2):65-73. PubMed ID: 24877757 [TBL] [Abstract][Full Text] [Related]
19. Hollow polymer microneedles array resistance and insertion tests. Lhernould MS; Deleers M; Delchambre A Int J Pharm; 2015 Mar; 480(1-2):152-7. PubMed ID: 25595569 [TBL] [Abstract][Full Text] [Related]