These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 23359283)
21. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation. Dharia S; Rabbitt RD PLoS One; 2011 Feb; 6(2):e17363. PubMed ID: 21387000 [TBL] [Abstract][Full Text] [Related]
22. Binding of a gating modifier toxin induces intersubunit cooperativity early in the Shaker K channel's activation pathway. Sack JT; Aldrich RW J Gen Physiol; 2006 Jul; 128(1):119-32. PubMed ID: 16801385 [TBL] [Abstract][Full Text] [Related]
23. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. Ledwell JL; Aldrich RW J Gen Physiol; 1999 Mar; 113(3):389-414. PubMed ID: 10051516 [TBL] [Abstract][Full Text] [Related]
24. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels. Salari A; Vega BS; Milescu LS; Milescu M Sci Rep; 2016 Apr; 6():23894. PubMed ID: 27045173 [TBL] [Abstract][Full Text] [Related]
25. Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain. Haddad GA; Blunck R J Gen Physiol; 2011 May; 137(5):455-72. PubMed ID: 21518834 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the interaction of tarantula toxin Jingzhaotoxin-III (β-TRTX-Cj1α) with the voltage sensor of Kv2.1 uncovers the molecular basis for cross-activities on Kv2.1 and Nav1.5 channels. Tao H; Chen JJ; Xiao YC; Wu YY; Su HB; Li D; Wang HY; Deng MC; Wang MC; Liu ZH; Liang SP Biochemistry; 2013 Oct; 52(42):7439-48. PubMed ID: 24044413 [TBL] [Abstract][Full Text] [Related]
27. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. Zhao J; Blunck R Elife; 2016 Oct; 5():. PubMed ID: 27710769 [TBL] [Abstract][Full Text] [Related]
28. More gating charges are needed to open a Shaker K+ channel than are needed to open an rBIIA Na+ channel. Gamal El-Din TM; Grögler D; Lehmann C; Heldstab H; Greeff NG Biophys J; 2008 Aug; 95(3):1165-75. PubMed ID: 18390620 [TBL] [Abstract][Full Text] [Related]
29. State-dependent block of BK channels by synthesized shaker ball peptides. Li W; Aldrich RW J Gen Physiol; 2006 Oct; 128(4):423-41. PubMed ID: 16966472 [TBL] [Abstract][Full Text] [Related]
30. Closing in on the resting state of the Shaker K(+) channel. Pathak MM; Yarov-Yarovoy V; Agarwal G; Roux B; Barth P; Kohout S; Tombola F; Isacoff EY Neuron; 2007 Oct; 56(1):124-40. PubMed ID: 17920020 [TBL] [Abstract][Full Text] [Related]
31. Solution structure of GxTX-1E, a high-affinity tarantula toxin interacting with voltage sensors in Kv2.1 potassium channels . Lee S; Milescu M; Jung HH; Lee JY; Bae CH; Lee CW; Kim HH; Swartz KJ; Kim JI Biochemistry; 2010 Jun; 49(25):5134-42. PubMed ID: 20509680 [TBL] [Abstract][Full Text] [Related]
32. Defining the conductance of the closed state in a voltage-gated K+ channel. Soler-Llavina GJ; Holmgren M; Swartz KJ Neuron; 2003 Apr; 38(1):61-7. PubMed ID: 12691664 [TBL] [Abstract][Full Text] [Related]
33. Extent of voltage sensor movement during gating of shaker K+ channels. Posson DJ; Selvin PR Neuron; 2008 Jul; 59(1):98-109. PubMed ID: 18614032 [TBL] [Abstract][Full Text] [Related]
34. Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. Redaelli E; Cassulini RR; Silva DF; Clement H; Schiavon E; Zamudio FZ; Odell G; Arcangeli A; Clare JJ; Alagón A; de la Vega RCR; Possani LD; Wanke E J Biol Chem; 2010 Feb; 285(6):4130-4142. PubMed ID: 19955179 [TBL] [Abstract][Full Text] [Related]
35. The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state. Kopljar I; Labro AJ; de Block T; Rainier JD; Tytgat J; Snyders DJ J Gen Physiol; 2013 Mar; 141(3):359-69. PubMed ID: 23401573 [TBL] [Abstract][Full Text] [Related]
36. Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Broomand A; Elinder F Neuron; 2008 Sep; 59(5):770-7. PubMed ID: 18786360 [TBL] [Abstract][Full Text] [Related]
37. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Swartz KJ; MacKinnon R Neuron; 1997 Apr; 18(4):665-73. PubMed ID: 9136774 [TBL] [Abstract][Full Text] [Related]
38. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Posson DJ; Ge P; Miller C; Bezanilla F; Selvin PR Nature; 2005 Aug; 436(7052):848-51. PubMed ID: 16094368 [TBL] [Abstract][Full Text] [Related]
39. S4 movement in a mammalian HCN channel. Vemana S; Pandey S; Larsson HP J Gen Physiol; 2004 Jan; 123(1):21-32. PubMed ID: 14676284 [TBL] [Abstract][Full Text] [Related]
40. Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence. Horne AJ; Peters CJ; Claydon TW; Fedida D J Gen Physiol; 2010 Jul; 136(1):83-99. PubMed ID: 20584892 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]