These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 23359392)
1. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism. Mirzoeva S; Franzen CA; Pelling JC Mol Carcinog; 2014 Aug; 53(8):598-609. PubMed ID: 23359392 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mirzoeva S; Kim ND; Chiu K; Franzen CA; Bergan RC; Pelling JC Mol Carcinog; 2008 Sep; 47(9):686-700. PubMed ID: 18240292 [TBL] [Abstract][Full Text] [Related]
3. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Franzen CA; Amargo E; Todorović V; Desai BV; Huda S; Mirzoeva S; Chiu K; Grzybowski BA; Chew TL; Green KJ; Pelling JC Cancer Prev Res (Phila); 2009 Sep; 2(9):830-41. PubMed ID: 19737984 [TBL] [Abstract][Full Text] [Related]
4. Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions. Chae KS; Kang MJ; Lee JH; Ryu BK; Lee MG; Her NG; Ha TK; Han J; Kim YK; Chi SG Oncogene; 2011 Mar; 30(10):1213-28. PubMed ID: 21057546 [TBL] [Abstract][Full Text] [Related]
5. Increased TGF-β1-mediated suppression of growth and motility in castrate-resistant prostate cancer cells is consistent with Smad2/3 signaling. Miles FL; Tung NS; Aguiar AA; Kurtoglu S; Sikes RA Prostate; 2012 Sep; 72(12):1339-50. PubMed ID: 22228025 [TBL] [Abstract][Full Text] [Related]
7. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells. Vo BT; Cody B; Cao Y; Khan SA Carcinogenesis; 2012 Nov; 33(11):2054-64. PubMed ID: 22843506 [TBL] [Abstract][Full Text] [Related]
8. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Park JI; Lee MG; Cho K; Park BJ; Chae KS; Byun DS; Ryu BK; Park YK; Chi SG Oncogene; 2003 Jul; 22(28):4314-32. PubMed ID: 12853969 [TBL] [Abstract][Full Text] [Related]
9. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Yoshimoto T; Fujita T; Kajiya M; Matsuda S; Ouhara K; Shiba H; Kurihara H Cytokine; 2015 Sep; 75(1):165-73. PubMed ID: 25882870 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor-beta suppressed Id-1 Expression in a smad3-dependent manner in LoVo cells. Song H; Guo B; Zhang J; Song C Anat Rec (Hoboken); 2010 Jan; 293(1):42-7. PubMed ID: 19798702 [TBL] [Abstract][Full Text] [Related]
11. Activation of extracellular signal-regulated kinase by TGF-beta1 via TbetaRII and Smad7 dependent mechanisms in human bronchial epithelial BEP2D cells. Huo YY; Hu YC; He XR; Wang Y; Song BQ; Zhou PK; Zhu MX; Li G; Wu DC Cell Biol Toxicol; 2007 Mar; 23(2):113-28. PubMed ID: 17096210 [TBL] [Abstract][Full Text] [Related]
12. Distortion of autocrine transforming growth factor beta signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells. Sugano Y; Matsuzaki K; Tahashi Y; Furukawa F; Mori S; Yamagata H; Yoshida K; Matsushita M; Nishizawa M; Fujisawa J; Inoue K Oncogene; 2003 Apr; 22(15):2309-21. PubMed ID: 12700666 [TBL] [Abstract][Full Text] [Related]
13. Oncogenic PAK4 regulates Smad2/3 axis involving gastric tumorigenesis. Wang C; Li Y; Zhang H; Liu F; Cheng Z; Wang D; Wang G; Xu H; Zhao Y; Cao L; Li F Oncogene; 2014 Jun; 33(26):3473-84. PubMed ID: 23934187 [TBL] [Abstract][Full Text] [Related]
15. Transforming growth factor (TGF)-β type I receptor kinase (ALK5) inhibitor alleviates profibrotic TGF-β1 responses in fibroblasts derived from Peyronie's plaque. Piao S; Choi MJ; Tumurbaatar M; Kim WJ; Jin HR; Shin SH; Tuvshintur B; Yin GN; Song JS; Kwon MH; Lee SJ; Han JY; Kim SJ; Ryu JK; Suh JK J Sex Med; 2010 Oct; 7(10):3385-95. PubMed ID: 20233292 [TBL] [Abstract][Full Text] [Related]
16. Disruption of the transforming growth factor-β pathway by tolfenamic acid via the ERK MAP kinase pathway. Zhang X; Min KW; Liggett J; Baek SJ Carcinogenesis; 2013 Dec; 34(12):2900-7. PubMed ID: 23864386 [TBL] [Abstract][Full Text] [Related]
17. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654 [TBL] [Abstract][Full Text] [Related]
18. Transforming growth factor-β 1 enhances the invasiveness of breast cancer cells by inducing a Smad2-dependent epithelial-to-mesenchymal transition. Lv ZD; Kong B; Li JG; Qu HL; Wang XG; Cao WH; Liu XY; Wang Y; Yang ZC; Xu HM; Wang HB Oncol Rep; 2013 Jan; 29(1):219-25. PubMed ID: 23129177 [TBL] [Abstract][Full Text] [Related]
19. Smad3 mediates TGF-beta1 induction of VEGF production in lung fibroblasts. Kobayashi T; Liu X; Wen FQ; Fang Q; Abe S; Wang XQ; Hashimoto M; Shen L; Kawasaki S; Kim HJ; Kohyama T; Rennard SI Biochem Biophys Res Commun; 2005 Feb; 327(2):393-8. PubMed ID: 15629128 [TBL] [Abstract][Full Text] [Related]
20. Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1. Ungefroren H; Groth S; Sebens S; Lehnert H; Gieseler F; Fändrich F Mol Cancer; 2011 May; 10():67. PubMed ID: 21624123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]