These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 23359448)

  • 1. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties.
    Rahman CV; Kuhn G; White LJ; Kirby GT; Varghese OP; McLaren JS; Cox HC; Rose FR; Müller R; Hilborn J; Shakesheff KM
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):648-55. PubMed ID: 23359448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.
    Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.
    Mikael PE; Amini AR; Basu J; Josefina Arellano-Jimenez M; Laurencin CT; Sanders MM; Barry Carter C; Nukavarapu SP
    Biomed Mater; 2014 Jun; 9(3):035001. PubMed ID: 24687391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells.
    Ghandforoushan P; Hanaee J; Aghazadeh Z; Samiei M; Navali AM; Khatibi A; Davaran S
    Drug Deliv Transl Res; 2022 Dec; 12(12):2960-2978. PubMed ID: 35650332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering.
    Spiller KL; Holloway JL; Gribb ME; Lowman AM
    J Tissue Eng Regen Med; 2011 Aug; 5(8):636-47. PubMed ID: 21774087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of PLGA concentrations on structural and mechanical properties of carbonate apatite foam.
    Munar GM; Munar ML; Tsuru K; Ishikawa K
    Dent Mater J; 2013; 32(4):608-14. PubMed ID: 23903643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall.
    Salem SA; Hwei NM; Bin Saim A; Ho CC; Sagap I; Singh R; Yusof MR; Md Zainuddin Z; Idrus RB
    J Biomed Mater Res A; 2013 Aug; 101(8):2237-47. PubMed ID: 23349110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications.
    Franco RA; Nguyen TH; Lee BT
    J Mater Sci Mater Med; 2011 Oct; 22(10):2207-18. PubMed ID: 21805330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications.
    Wang Y; Shi X; Ren L; Yao Y; Zhang F; Wang DA
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):84-92. PubMed ID: 20091906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro.
    Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.