These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23359959)

  • 1. [Applications of soil metaproteomics in soil pollution assessment: a review].
    Zhang X; Li F; Liu TT; Chen YX
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2923-30. PubMed ID: 23359959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.
    Becher D; Bernhardt J; Fuchs S; Riedel K
    Proteomics; 2013 Oct; 13(18-19):2895-909. PubMed ID: 23894095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing metaproteomics--The value of models and defined environmental microbial systems.
    Herbst FA; Lünsmann V; Kjeldal H; Jehmlich N; Tholey A; von Bergen M; Nielsen JL; Hettich RL; Seifert J; Nielsen PH
    Proteomics; 2016 Mar; 16(5):783-98. PubMed ID: 26621789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil Metaproteomics for Microbial Community Profiling: Methodologies and Challenges.
    Pan H; Wattiez R; Gillan D
    Curr Microbiol; 2024 Jul; 81(8):257. PubMed ID: 38955825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. It's all about functionality: How can metaproteomics help us to discuss the attributes of ecological relevance in soil?
    Bastida F; Jehmlich N
    J Proteomics; 2016 Jul; 144():159-61. PubMed ID: 27265322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A decade of metaproteomics: where we stand and what the future holds.
    Wilmes P; Heintz-Buschart A; Bond PL
    Proteomics; 2015 Oct; 15(20):3409-17. PubMed ID: 26315987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of metaproteomics in crop rhizospheric soil.
    Wang HB; Zhang ZX; Li H; He HB; Fang CX; Zhang AJ; Li QS; Chen RS; Guo XK; Lin HF; Wu LK; Lin S; Chen T; Lin RY; Peng XX; Lin WX
    J Proteome Res; 2011 Mar; 10(3):932-40. PubMed ID: 21142081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding.
    Keiblinger KM; Fuchs S; Zechmeister-Boltenstern S; Riedel K
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27549116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics.
    Starke R; Jehmlich N; Bastida F
    J Proteomics; 2019 Apr; 198():50-58. PubMed ID: 30445181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine metaproteomics: current status and future directions.
    Wang DZ; Xie ZX; Zhang SF
    J Proteomics; 2014 Jan; 97():27-35. PubMed ID: 24041543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil Metaproteomics for the Study of the Relationships Between Microorganisms and Plants: A Review of Extraction Protocols and Ecological Insights.
    Tartaglia M; Bastida F; Sciarrillo R; Guarino C
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of a Detergent-Based Method for Direct Microbial Cellular Lysis/Proteome Extraction from Soil Samples for Metaproteomics Studies.
    Chourey K; Hettich RL
    Methods Mol Biol; 2018; 1841():293-302. PubMed ID: 30259494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods.
    Bastida F; Hernández T; García C
    J Proteomics; 2014 Apr; 101():31-42. PubMed ID: 24530626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review.
    Chae Y; An YJ
    Environ Pollut; 2018 Sep; 240():387-395. PubMed ID: 29753246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles.
    Zampieri E; Chiapello M; Daghino S; Bonfante P; Mello A
    Sci Rep; 2016 May; 6():25773. PubMed ID: 27161395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP
    J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.
    Odlare M; Pell M; Svensson K
    Waste Manag; 2008; 28(7):1246-53. PubMed ID: 17697770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct cellular lysis/protein extraction protocol for soil metaproteomics.
    Chourey K; Jansson J; VerBerkmoes N; Shah M; Chavarria KL; Tom LM; Brodie EL; Hettich RL
    J Proteome Res; 2010 Dec; 9(12):6615-22. PubMed ID: 20954746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring mixed microbial community functioning: recent advances in metaproteomics.
    Siggins A; Gunnigle E; Abram F
    FEMS Microbiol Ecol; 2012 May; 80(2):265-80. PubMed ID: 22225547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple discovery of bacterial biocatalysts from environmental samples through functional metaproteomics.
    Sukul P; Schäkermann S; Bandow JE; Kusnezowa A; Nowrousian M; Leichert LI
    Microbiome; 2017 Mar; 5(1):28. PubMed ID: 28253936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.