These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23360081)

  • 1. Oscillation and recoil of single and consecutively printed droplets.
    Yang X; Chhasatia VH; Sun Y
    Langmuir; 2013 Feb; 29(7):2185-92. PubMed ID: 23360081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-induced modification of low weber number droplet impact dynamics.
    Gatne KP; Jog MA; Manglik RM
    Langmuir; 2009 Jul; 25(14):8122-30. PubMed ID: 19534455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.
    Lin S; Zhao B; Zou S; Guo J; Wei Z; Chen L
    J Colloid Interface Sci; 2018 Apr; 516():86-97. PubMed ID: 29360059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers.
    Son Y; Kim C; Yang DH; Ahn DJ
    Langmuir; 2008 Mar; 24(6):2900-7. PubMed ID: 18260678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imparting Icephobicity with Substrate Flexibility.
    Vasileiou T; Schutzius TM; Poulikakos D
    Langmuir; 2017 Jul; 33(27):6708-6718. PubMed ID: 28609620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic behaviors of droplet impact and spreading: water on five different substrates.
    Wang MJ; Lin FH; Hung YL; Lin SY
    Langmuir; 2009 Jun; 25(12):6772-80. PubMed ID: 19379008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of surface acoustic waves on droplet impact dynamics.
    Satpathi NS; Nampoothiri KN; Sen AK
    J Colloid Interface Sci; 2023 Jul; 641():499-509. PubMed ID: 36948105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact dynamics of oxidized liquid metal drops.
    Xu Q; Brown E; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043012. PubMed ID: 23679518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescence and noncoalescence of sessile drops: impact of surface forces.
    Karpitschka S; Hanske C; Fery A; Riegler H
    Langmuir; 2014 Jun; 30(23):6826-30. PubMed ID: 24841430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printing stable liquid tracks on a surface with finite receding contact angle.
    Hsiao WK; Martin GD; Hutchings IM
    Langmuir; 2014 Oct; 30(41):12447-55. PubMed ID: 25251720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet impact: Viscosity and wettability effects on splashing.
    Almohammadi H; Amirfazli A
    J Colloid Interface Sci; 2019 Oct; 553():22-30. PubMed ID: 31176976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.
    Bolleddula DA; Berchielli A; Aliseda A
    Adv Colloid Interface Sci; 2010 Sep; 159(2):144-59. PubMed ID: 20638044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension.
    Freer EM; Wong H; Radke CJ
    J Colloid Interface Sci; 2005 Feb; 282(1):128-32. PubMed ID: 15576090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding (sessile/constrained) bubble and drop oscillations.
    Milne AJ; Defez B; Cabrerizo-Vílchez M; Amirfazli A
    Adv Colloid Interface Sci; 2014 Jan; 203():22-36. PubMed ID: 24359696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.