BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23360165)

  • 1. Imidazoline-1 receptor ligands as apoptotic agents: pharmacophore modeling and virtual docking study.
    Nikolic K; Veljkovic N; Gemovic B; Srdic-Rajic T; Agbaba D
    Comb Chem High Throughput Screen; 2013 May; 16(4):298-319. PubMed ID: 23360165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the receptor involved in the central hypotensive effect of rilmenidine and moxonidine.
    Bock C; Niederhoffer N; Szabo B
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):262-71. PubMed ID: 10344524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative importance of central imidazoline receptors for the antihypertensive effects of moxonidine and rilmenidine.
    Chan CK; Head GA
    J Hypertens; 1996 Jul; 14(7):855-64. PubMed ID: 8818924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells.
    Srdic-Rajic T; Nikolic K; Cavic M; Djokic I; Gemovic B; Perovic V; Veljkovic N
    Eur J Pharm Sci; 2016 Jan; 81():172-80. PubMed ID: 26598394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of I1 imidazoline receptors in the sympathoinhibition produced by intracisternally administered rilmenidine and moxonidine.
    Szabo B; Urban R
    Arzneimittelforschung; 1997 Sep; 47(9):1009-15. PubMed ID: 9342413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzofuranyl-2-imidazoles as imidazoline I
    Rodriguez-Arévalo S; Bagán A; Griñán-Ferré C; Vasilopoulou F; Pallàs M; Brocos-Mosquera I; Callado LF; Loza MI; Martínez AL; Brea J; Pérez B; Molins E; De Jonghe S; Daelemans D; Radan M; Djikic T; Nikolic K; Hernández-Hernández E; García-Fuster MJ; García-Sevilla JA; Escolano C
    Eur J Med Chem; 2021 Oct; 222():113540. PubMed ID: 34118720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of agmatine with moxonidine and rilmenidine in morphine dependence in vitro: role of imidazoline I(1) receptors.
    Li F; Wu N; Su RB; Liu Y; Lu XQ; Li J
    Eur J Pharmacol; 2009 Jun; 612(1-3):1-8. PubMed ID: 19356733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of imidazoline receptors in the cardiovascular actions of moxonidine, rilmenidine and clonidine in conscious rabbits.
    Chan CK; Sannajust F; Head GA
    J Pharmacol Exp Ther; 1996 Feb; 276(2):411-20. PubMed ID: 8632304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of imidazoline-preferring receptors in the cardiovascular actions of chronically administered moxonidine, rilmenidine and clonidine in conscious rabbits.
    Parkin ML; Godwin SJ; Head GA
    J Hypertens; 2003 Jan; 21(1):167-78. PubMed ID: 12544449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of imidazoline receptors in the cardiovascular actions of centrally acting antihypertensive agents.
    Head GA
    Ann N Y Acad Sci; 1995 Jul; 763():531-40. PubMed ID: 7677371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-QSAR, Virtual Screening, Docking and Design of Dual PI3K/mTOR Inhibitors with Enhanced Antiproliferative Activity.
    Oluić J; Nikolic K; Vucicevic J; Gagic Z; Filipic S; Agbaba D
    Comb Chem High Throughput Screen; 2017 Aug; 20(4):292-303. PubMed ID: 28460621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin.
    Vucicevic J; Srdic-Rajic T; Pieroni M; Laurila JM; Perovic V; Tassini S; Azzali E; Costantino G; Glisic S; Agbaba D; Scheinin M; Nikolic K; Radi M; Veljkovic N
    Bioorg Med Chem; 2016 Jul; 24(14):3174-83. PubMed ID: 27265687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative validated molecular modeling of p53-HDM2 inhibitors as antiproliferative agents.
    Mondal C; Halder AK; Adhikari N; Saha A; Saha KD; Gayen S; Jha T
    Eur J Med Chem; 2015 Jan; 90():860-75. PubMed ID: 25535952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No evidence for functional imidazoline receptors on locus coeruleus neurons.
    Szabo B; Fröhlich R; Illes P
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):557-63. PubMed ID: 8740150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central imidazoline (I1) receptors as targets of centrally acting antihypertensives: moxonidine and rilmenidine.
    van Zwieten PA
    J Hypertens; 1997 Feb; 15(2):117-25. PubMed ID: 9469786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of imidazoline receptor ligands on basal and kainic acid-induced neurotoxic signalling in mice.
    Keller B; García-Sevilla JA
    J Psychopharmacol; 2016 Sep; 30(9):875-86. PubMed ID: 27302941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacophore, 3D-QSAR Models and Dynamic Simulation of 1,4-Benzothiazines for Colorectal Cancer Treatment.
    Rai A; Raj V; Aboumanei MH; Singh AK; Keshari AK; Verma SP; Saha S
    Comb Chem High Throughput Screen; 2017; 20(8):658-674. PubMed ID: 28486913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rilmenidine-induced ocular hypotension: role of imidazoline1 and alpha 2 receptors.
    Chu TC; Wong W; Gluchowski C; Hughes BW; Potter DE
    Curr Eye Res; 1996 Sep; 15(9):943-50. PubMed ID: 8921215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico approaches to identify novel myeloid cell leukemia-1 (Mcl-1) inhibitors for treatment of cancer.
    Ren JX; Li CP; Zhou XL; Cao XS; Xie Y
    J Biomol Struct Dyn; 2018 Jul; 36(9):2424-2435. PubMed ID: 28714799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual screening of B-Raf kinase inhibitors: A combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy calculation studies.
    Zhang W; Qiu KX; Yu F; Xie XG; Zhang SQ; Chen YJ; Xie HD
    Comput Biol Chem; 2017 Oct; 70():186-190. PubMed ID: 28892749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.