These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23360181)

  • 21. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1.
    Rosłoniec KZ; Wilbrink MH; Capyk JK; Mohn WW; Ostendorf M; van der Geize R; Dijkhuizen L; Eltis LD
    Mol Microbiol; 2009 Dec; 74(5):1031-43. PubMed ID: 19843222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids.
    Capyk JK; Kalscheuer R; Stewart GR; Liu J; Kwon H; Zhao R; Okamoto S; Jacobs WR; Eltis LD; Mohn WW
    J Biol Chem; 2009 Dec; 284(51):35534-42. PubMed ID: 19846551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition.
    Tajparast M; Frigon D
    BMC Syst Biol; 2015 Aug; 9():43. PubMed ID: 26248853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delineation of Steroid-Degrading Microorganisms through Comparative Genomic Analysis.
    Bergstrand LH; Cardenas E; Holert J; Van Hamme JD; Mohn WW
    mBio; 2016 Mar; 7(2):e00166. PubMed ID: 26956583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism.
    Casabon I; Swain K; Crowe AM; Eltis LD; Mohn WW
    J Bacteriol; 2014 Feb; 196(3):579-87. PubMed ID: 24244004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into sequence-activity relationships amongst Baeyer-Villiger monooxygenases as revealed by the intragenomic complement of enzymes from Rhodococcus jostii RHA1.
    Szolkowy C; Eltis LD; Bruce NC; Grogan G
    Chembiochem; 2009 May; 10(7):1208-17. PubMed ID: 19360806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway.
    Merino E; Barrientos A; Rodríguez J; Naharro G; Luengo JM; Olivera ER
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):891-904. PubMed ID: 22406861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen.
    Dávila Costa JS; Silva RA; Leichert L; Alvarez HM
    Microbiology (Reading); 2017 Mar; 163(3):343-354. PubMed ID: 28073401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The unusual convergence of steroid catabolic pathways in
    Crowe AM; Krekhno JMC; Brown KL; Kulkarni JA; Yam KC; Eltis LD
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2207505119. PubMed ID: 36161908
    [No Abstract]   [Full Text] [Related]  

  • 30. 3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism.
    Knol J; Bodewits K; Hessels GI; Dijkhuizen L; van der Geize R
    Biochem J; 2008 Mar; 410(2):339-46. PubMed ID: 18031290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steryl Ester Formation and Accumulation in Steroid-Degrading Bacteria.
    Holert J; Brown K; Hashimi A; Eltis LD; Mohn WW
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31704679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1.
    Dávila Costa JS; Herrero OM; Alvarez HM; Leichert L
    Microbiology (Reading); 2015 Mar; 161(Pt 3):593-610. PubMed ID: 25564499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1.
    Villalba MS; Alvarez HM
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1523-1532. PubMed ID: 24739215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 7-ketocholesterol catabolism by Rhodococcus jostii RHA1.
    Mathieu JM; Mohn WW; Eltis LD; LeBlanc JC; Stewart GR; Dresen C; Okamoto K; Alvarez PJ
    Appl Environ Microbiol; 2010 Jan; 76(1):352-5. PubMed ID: 19880645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment.
    Rahmanpour R; Bugg TD
    FEBS J; 2013 May; 280(9):2097-104. PubMed ID: 23560779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse.
    McLeod MP; Warren RL; Hsiao WW; Araki N; Myhre M; Fernandes C; Miyazawa D; Wong W; Lillquist AL; Wang D; Dosanjh M; Hara H; Petrescu A; Morin RD; Yang G; Stott JM; Schein JE; Shin H; Smailus D; Siddiqui AS; Marra MA; Jones SJ; Holt R; Brinkman FS; Miyauchi K; Fukuda M; Davies JE; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15582-7. PubMed ID: 17030794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The catabolism of ethylene glycol by
    Roccor R; Wolf ME; Liu J; Eltis LD
    Appl Environ Microbiol; 2024 Jun; ():e0041624. PubMed ID: 38837369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1.
    Shimizu T; Suzuki K; Inui M
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):58. PubMed ID: 38175243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria.
    Casabon I; Crowe AM; Liu J; Eltis LD
    Mol Microbiol; 2013 Jan; 87(2):269-83. PubMed ID: 23146019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization.
    Sabirova JS; Ferrer M; Regenhardt D; Timmis KN; Golyshin PN
    J Bacteriol; 2006 Jun; 188(11):3763-73. PubMed ID: 16707669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.