BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 23360230)

  • 1. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC
    Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell analysis using surface enhanced Raman scattering (SERS) tags.
    Nolan JP; Duggan E; Liu E; Condello D; Dave I; Stoner SA
    Methods; 2012 Jul; 57(3):272-9. PubMed ID: 22498143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles.
    Nguyen CT; Nguyen JT; Rutledge S; Zhang J; Wang C; Walker GC
    Cancer Lett; 2010 Jun; 292(1):91-7. PubMed ID: 20042272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica coated gold nanoaggregates prepared by reverse microemulsion method: dual mode probes for multiplex immunoassay using SERS and fluorescence.
    Wang Z; Zong S; Chen H; Wu H; Cui Y
    Talanta; 2011 Oct; 86():170-7. PubMed ID: 22063527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles.
    Zhang H; Harpster MH; Wilson WC; Johnson PA
    Langmuir; 2012 Feb; 28(8):4030-7. PubMed ID: 22276995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ
    J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy.
    Wang X; Wang C; Cheng L; Lee ST; Liu Z
    J Am Chem Soc; 2012 May; 134(17):7414-22. PubMed ID: 22486413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.
    Narayanan N; Karunakaran V; Paul W; Venugopal K; Sujathan K; Kumar Maiti K
    Biosens Bioelectron; 2015 Aug; 70():145-52. PubMed ID: 25801955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
    Wang Z; Zong S; Chen H; Wang C; Xu S; Cui Y
    Adv Healthc Mater; 2014 Nov; 3(11):1889-97. PubMed ID: 24862088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition.
    Hering KK; Möller R; Fritzsche W; Popp J
    Chemphyschem; 2008 Apr; 9(6):867-72. PubMed ID: 18386261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules.
    Gellner M; Kömpe K; Schlücker S
    Anal Bioanal Chem; 2009 Aug; 394(7):1839-44. PubMed ID: 19543719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids].
    Li SJ; Qiu LQ; Cao PG; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1575-8. PubMed ID: 15828331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.