BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23360232)

  • 1. Surface-modified HK:siRNA nanoplexes with enhanced pharmacokinetics and tumor growth inhibition.
    Chou ST; Leng Q; Scaria P; Kahn JD; Tricoli LJ; Woodle M; Mixson AJ
    Biomacromolecules; 2013 Mar; 14(3):752-60. PubMed ID: 23360232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective modification of HK peptides enhances siRNA silencing of tumor targets in vivo.
    Chou ST; Leng Q; Scaria P; Woodle M; Mixson AJ
    Cancer Gene Ther; 2011 Oct; 18(10):707-16. PubMed ID: 21818135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts.
    Leng Q; Scaria P; Lu P; Woodle MC; Mixson AJ
    Cancer Gene Ther; 2008 Aug; 15(8):485-95. PubMed ID: 18483501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly branched HK peptides are effective carriers of siRNA.
    Leng Q; Scaria P; Zhu J; Ambulos N; Campbell P; Mixson AJ
    J Gene Med; 2005 Jul; 7(7):977-86. PubMed ID: 15772938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Cancer with Peptide RNAi Nanoplexes.
    Mixson AJ; Leng Q; Chou ST; Woodle MC
    Methods Mol Biol; 2019; 1974():161-180. PubMed ID: 31099002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo.
    Leng Q; Mixson AJ
    Cancer Gene Ther; 2005 Aug; 12(8):682-90. PubMed ID: 15803144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of ternary nanoplexes for efficient small interfering RNA delivery.
    Şalva E; Turan SÖ; Akbuğa J
    Biol Pharm Bull; 2013; 36(12):1907-14. PubMed ID: 24432377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buffering capacity and size of siRNA polyplexes influence cytokine levels.
    Leng Q; Chou ST; Scaria PV; Woodle MC; Mixson AJ
    Mol Ther; 2012 Dec; 20(12):2282-90. PubMed ID: 23032972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds.
    Chou ST; Hom K; Zhang D; Leng Q; Tricoli LJ; Hustedt JM; Lee A; Shapiro MJ; Seog J; Kahn JD; Mixson AJ
    Biomaterials; 2014 Jan; 35(2):846-55. PubMed ID: 24161165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tumor-targeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo.
    He S; Cen B; Liao L; Wang Z; Qin Y; Wu Z; Liao W; Zhang Z; Ji A
    Drug Deliv; 2017 Nov; 24(1):471-481. PubMed ID: 28181832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand.
    Lee DJ; Kessel E; Edinger D; He D; Klein PM; Voith von Voithenberg L; Lamb DC; Lächelt U; Lehto T; Wagner E
    Biomaterials; 2016 Jan; 77():98-110. PubMed ID: 26584350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembling Mn:ZnSe quantum dots-siRNA nanoplexes for gene silencing in tumor cells.
    Wang Y; Yang C; Hu R; Toh HT; Liu X; Lin G; Yin F; Yoon HS; Yong KT
    Biomater Sci; 2015 Jan; 3(1):192-202. PubMed ID: 26214202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination therapy with chitosan/siRNA nanoplexes targeting PDGF-D and PDGFR-β reveals anticancer effect in breast cancer.
    Şalva E; Özbaş S; Alan S; Özkan N; Ekentok-Atıcı C; Kabasakal L; Akbuğa J
    J Gene Med; 2023 Feb; 25(2):e3465. PubMed ID: 36413571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing.
    Sarett SM; Werfel TA; Chandra I; Jackson MA; Kavanaugh TE; Hattaway ME; Giorgio TD; Duvall CL
    Biomaterials; 2016 Aug; 97():122-32. PubMed ID: 27163624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zwitterionic Nanocarrier Surface Chemistry Improves siRNA Tumor Delivery and Silencing Activity Relative to Polyethylene Glycol.
    Jackson MA; Werfel TA; Curvino EJ; Yu F; Kavanaugh TE; Sarett SM; Dockery MD; Kilchrist KV; Jackson AN; Giorgio TD; Duvall CL
    ACS Nano; 2017 Jun; 11(6):5680-5696. PubMed ID: 28548843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles.
    Yi Y; Kim HJ; Mi P; Zheng M; Takemoto H; Toh K; Kim BS; Hayashi K; Naito M; Matsumoto Y; Miyata K; Kataoka K
    J Control Release; 2016 Dec; 244(Pt B):247-256. PubMed ID: 27590214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of disulfide-bridge on the activities of H-shape gemini-like cationic lipid based siRNA delivery.
    Ma XF; Sun J; Qiu C; Wu YF; Zheng Y; Yu MZ; Pei XW; Wei L; Niu YJ; Pang WH; Yang ZJ; Wang JC; Zhang Q
    J Control Release; 2016 Aug; 235():99-111. PubMed ID: 27242198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing.
    Sarett SM; Werfel TA; Lee L; Jackson MA; Kilchrist KV; Brantley-Sieders D; Duvall CL
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):E6490-E6497. PubMed ID: 28739942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotherapy silencing the interleukin-8 gene produces regression of prostate cancer by inhibition of angiogenesis.
    Aalinkeel R; Nair B; Chen CK; Mahajan SD; Reynolds JL; Zhang H; Sun H; Sykes DE; Chadha KC; Turowski SG; Bothwell KD; Seshadri M; Cheng C; Schwartz SA
    Immunology; 2016 Aug; 148(4):387-406. PubMed ID: 27159450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment.
    Yonenaga N; Kenjo E; Asai T; Tsuruta A; Shimizu K; Dewa T; Nango M; Oku N
    J Control Release; 2012 Jun; 160(2):177-81. PubMed ID: 22019557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.