BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 23360244)

  • 21. Fibrotic Changes Mediating Acute Kidney Injury to Chronic Kidney Disease Transition.
    Ó hAinmhire E; Humphreys BD
    Nephron; 2017; 137(4):264-267. PubMed ID: 28595180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic Changes in the Acute Kidney Injury-to-Chronic Kidney Disease Transition.
    Nangaku M; Hirakawa Y; Mimura I; Inagi R; Tanaka T
    Nephron; 2017; 137(4):256-259. PubMed ID: 28595179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the Mechanisms of the Acute Kidney Injury-to-Chronic Kidney Disease Continuum.
    Takaori K; Yanagita M
    Nephron; 2016; 134(3):172-176. PubMed ID: 27398799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease.
    Zarjou A; Black LM; Bolisetty S; Traylor AM; Bowhay SA; Zhang MZ; Harris RC; Agarwal A
    Lab Invest; 2019 Sep; 99(9):1376-1388. PubMed ID: 31019289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD.
    Kim DH; Park JS; Choi HI; Kim CS; Bae EH; Ma SK; Kim SW
    Cell Death Dis; 2021 Mar; 12(4):320. PubMed ID: 33767132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subcellular trafficking of tubular MDM2 implicates in acute kidney injury to chronic kidney disease transition during multiple low-dose cisplatin exposure.
    Su H; Ye C; Lei CT; Tang H; Zeng JY; Yi F; Zhang C
    FASEB J; 2020 Jan; 34(1):1620-1636. PubMed ID: 31914692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats.
    Mehrotra P; Collett JA; McKinney SD; Stevens J; Ivancic CM; Basile DP
    Am J Physiol Renal Physiol; 2017 Mar; 312(3):F385-F397. PubMed ID: 27852609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming.
    Zhu Z; Hu J; Chen Z; Feng J; Yang X; Liang W; Ding G
    Metabolism; 2022 Jun; 131():155194. PubMed ID: 35346693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypoxia as a key player in the AKI-to-CKD transition.
    Tanaka S; Tanaka T; Nangaku M
    Am J Physiol Renal Physiol; 2014 Dec; 307(11):F1187-95. PubMed ID: 25350978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Divergent effects of AKI to CKD models on inflammation and fibrosis.
    Black LM; Lever JM; Traylor AM; Chen B; Yang Z; Esman SK; Jiang Y; Cutter GR; Boddu R; George JF; Agarwal A
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1107-F1118. PubMed ID: 29897282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial Signaling, the Mechanisms of AKI-to-CKD Transition and Potential Treatment Targets.
    Chang LY; Chao YL; Chiu CC; Chen PL; Lin HY
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis.
    Menshikh A; Scarfe L; Delgado R; Finney C; Zhu Y; Yang H; de Caestecker MP
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1383-F1397. PubMed ID: 31509009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immune cells and inflammation in AKI to CKD progression.
    Sato Y; Yanagita M
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1501-F1512. PubMed ID: 30156114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rodent models of AKI-CKD transition.
    Fu Y; Tang C; Cai J; Chen G; Zhang D; Dong Z
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1098-F1106. PubMed ID: 29949392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acute Kidney Injury to Chronic Kidney Disease Transition.
    Fiorentino M; Grandaliano G; Gesualdo L; Castellano G
    Contrib Nephrol; 2018; 193():45-54. PubMed ID: 29393158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia.
    Lee CJ; Gardiner BS; Ngo JP; Kar S; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F218-F236. PubMed ID: 28404592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis.
    Chen Y; Lin L; Tao X; Song Y; Cui J; Wan J
    BMC Nephrol; 2019 Mar; 20(1):106. PubMed ID: 30922260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms.
    He L; Wei Q; Liu J; Yi M; Liu Y; Liu H; Sun L; Peng Y; Liu F; Venkatachalam MA; Dong Z
    Kidney Int; 2017 Nov; 92(5):1071-1083. PubMed ID: 28890325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation.
    Li C; Xie N; Li Y; Liu C; Hou FF; Wang J
    Free Radic Biol Med; 2019 Jan; 130():512-527. PubMed ID: 30447351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EGFR drives the progression of AKI to CKD through HIPK2 overexpression.
    Xu L; Li X; Zhang F; Wu L; Dong Z; Zhang D
    Theranostics; 2019; 9(9):2712-2726. PubMed ID: 31131063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.