These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline. Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032 [TBL] [Abstract][Full Text] [Related]
7. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053 [TBL] [Abstract][Full Text] [Related]
8. Model Balancing: A Search for In-Vivo Kinetic Constants and Consistent Metabolic States. Liebermeister W; Noor E Metabolites; 2021 Oct; 11(11):. PubMed ID: 34822407 [TBL] [Abstract][Full Text] [Related]
9. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Yizhak K; Benyamini T; Liebermeister W; Ruppin E; Shlomi T Bioinformatics; 2010 Jun; 26(12):i255-60. PubMed ID: 20529914 [TBL] [Abstract][Full Text] [Related]
10. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations. Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161 [TBL] [Abstract][Full Text] [Related]
11. Pathway thermodynamics highlights kinetic obstacles in central metabolism. Noor E; Bar-Even A; Flamholz A; Reznik E; Liebermeister W; Milo R PLoS Comput Biol; 2014 Feb; 10(2):e1003483. PubMed ID: 24586134 [TBL] [Abstract][Full Text] [Related]
12. Exploring the gap between dynamic and constraint-based models of metabolism. Machado D; Costa RS; Ferreira EC; Rocha I; Tidor B Metab Eng; 2012 Mar; 14(2):112-9. PubMed ID: 22306209 [TBL] [Abstract][Full Text] [Related]
13. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models. Hamilton JJ; Dwivedi V; Reed JL Biophys J; 2013 Jul; 105(2):512-22. PubMed ID: 23870272 [TBL] [Abstract][Full Text] [Related]
14. Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis. Tian M; Reed JL Bioinformatics; 2018 Nov; 34(22):3882-3888. PubMed ID: 29878053 [TBL] [Abstract][Full Text] [Related]
15. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566 [TBL] [Abstract][Full Text] [Related]
16. Emerging ensembles of kinetic parameters to characterize observed metabolic phenotypes. Colombo R; Damiani C; Gilbert D; Heiner M; Mauri G; Pescini D BMC Bioinformatics; 2018 Jul; 19(Suppl 7):251. PubMed ID: 30066662 [TBL] [Abstract][Full Text] [Related]
17. Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants. Choi HS; Kim TY; Lee DY; Lee SY J Biotechnol; 2007 May; 129(4):696-705. PubMed ID: 17408794 [TBL] [Abstract][Full Text] [Related]
18. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. Fleming RM; Thiele I; Provan G; Nasheuer HP J Theor Biol; 2010 Jun; 264(3):683-92. PubMed ID: 20230840 [TBL] [Abstract][Full Text] [Related]
19. Shrinking the metabolic solution space using experimental datasets. Reed JL PLoS Comput Biol; 2012; 8(8):e1002662. PubMed ID: 22956899 [TBL] [Abstract][Full Text] [Related]