These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 23360254)

  • 21. Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli.
    Fleming RM; Thiele I; Nasheuer HP
    Biophys Chem; 2009 Dec; 145(2-3):47-56. PubMed ID: 19783351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():42. PubMed ID: 17173670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Omics data for sampling thermodynamically feasible kinetic models.
    de Leeuw M; Matos MRA; Nielsen LK
    Metab Eng; 2023 Jul; 78():41-47. PubMed ID: 37209863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flux imbalance analysis and the sensitivity of cellular growth to changes in metabolite pools.
    Reznik E; Mehta P; Segrè D
    PLoS Comput Biol; 2013; 9(8):e1003195. PubMed ID: 24009492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
    Kiparissides A; Hatzimanikatis V
    Metab Eng; 2017 Jan; 39():117-127. PubMed ID: 27845184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data.
    Canelas AB; Ras C; ten Pierick A; van Gulik WM; Heijnen JJ
    Metab Eng; 2011 May; 13(3):294-306. PubMed ID: 21354323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models.
    Salvy P; Hatzimanikatis V
    Nat Commun; 2020 Jan; 11(1):30. PubMed ID: 31937763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis.
    Salvy P; Fengos G; Ataman M; Pathier T; Soh KC; Hatzimanikatis V
    Bioinformatics; 2019 Jan; 35(1):167-169. PubMed ID: 30561545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism.
    Birkel GW; Ghosh A; Kumar VS; Weaver D; Ando D; Backman TWH; Arkin AP; Keasling JD; Martín HG
    BMC Bioinformatics; 2017 Apr; 18(1):205. PubMed ID: 28381205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LK-DFBA: a linear programming-based modeling strategy for capturing dynamics and metabolite-dependent regulation in metabolism.
    Dromms RA; Lee JY; Styczynski MP
    BMC Bioinformatics; 2020 Mar; 21(1):93. PubMed ID: 32122331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical and metabolic constraints for thermodynamics-based stoichiometric modelling under mesophilic growth conditions.
    Tomi-Andrino C; Norman R; Millat T; Soucaille P; Winzer K; Barrett DA; King J; Kim DH
    PLoS Comput Biol; 2021 Jan; 17(1):e1007694. PubMed ID: 33493151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic flux configuration determination using information entropy.
    Rivas-Astroza M; Conejeros R
    PLoS One; 2020; 15(12):e0243067. PubMed ID: 33275628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
    Noor E; Flamholz A; Bar-Even A; Davidi D; Milo R; Liebermeister W
    PLoS Comput Biol; 2016 Nov; 12(11):e1005167. PubMed ID: 27812109
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.