BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23360280)

  • 1. Role of neurotrophins in spinal plasticity and locomotion.
    Arvanian V
    Curr Pharm Des; 2013; 19(24):4509-16. PubMed ID: 23360280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of brain-derived neurotrophic factor and neurotrophin-4 in lumbar motoneurons after low-thoracic spinal cord hemisection.
    Gulino R; Lombardo SA; Casabona A; Leanza G; Perciavalle V
    Brain Res; 2004 Jul; 1013(2):174-81. PubMed ID: 15193526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophins and synaptic plasticity in the mammalian spinal cord.
    Mendell LM; Munson JB; Arvanian VL
    J Physiol; 2001 May; 533(Pt 1):91-7. PubMed ID: 11351017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats.
    Hunanyan AS; Petrosyan HA; Alessi V; Arvanian VL
    J Neurophysiol; 2013 Oct; 110(8):1782-92. PubMed ID: 23864374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats.
    Petrosyan HA; Alessi V; Lasek K; Gumudavelli S; Muffaletto R; Liang L; Collins WF; Levine J; Arvanian VL
    J Neurosci; 2023 Mar; 43(9):1492-1508. PubMed ID: 36653191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury.
    Iarikov DE; Kim BG; Dai HN; McAtee M; Kuhn PL; Bregman BS
    J Neurotrauma; 2007 Apr; 24(4):690-702. PubMed ID: 17439351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 8. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury.
    Fink KL; Cafferty WB
    Neurotherapeutics; 2016 Apr; 13(2):370-81. PubMed ID: 26846379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.
    Huie JR; Morioka K; Haefeli J; Ferguson AR
    J Neurotrauma; 2017 May; 34(10):1831-1840. PubMed ID: 27875927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice.
    Han Q; Ordaz JD; Liu NK; Richardson Z; Wu W; Xia Y; Qu W; Wang Y; Dai H; Zhang YP; Shields CB; Smith GM; Xu XM
    Nat Commun; 2019 Dec; 10(1):5815. PubMed ID: 31862889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.
    Hendriks WT; Ruitenberg MJ; Blits B; Boer GJ; Verhaagen J
    Prog Brain Res; 2004; 146():451-76. PubMed ID: 14699980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury.
    Keefe KM; Sheikh IS; Smith GM
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28273811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of neurotrophin action in the postnatal spinal cord.
    Mendell LM; Arvanian VL
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):230-9. PubMed ID: 12589921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery.
    Wang Y; Wu W; Wu X; Sun Y; Zhang YP; Deng LX; Walker MJ; Qu W; Chen C; Liu NK; Han Q; Dai H; Shields LB; Shields CB; Sengelaub DR; Jones KJ; Smith GM; Xu XM
    Elife; 2018 Sep; 7():. PubMed ID: 30207538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats.
    Lu KW; Chen ZY; Hou TS
    Chin J Traumatol; 2004 Oct; 7(5):275-9. PubMed ID: 15363220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.
    Gill LC; Gransee HM; Sieck GC; Mantilla CB
    Respir Physiol Neurobiol; 2016 Jun; 226():128-36. PubMed ID: 26506253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control and role of plateau potential properties in the spinal cord.
    Hultborn H; Zhang M; Meehan CF
    Curr Pharm Des; 2013; 19(24):4357-70. PubMed ID: 23360269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord.
    Garraway SM; Huie JR
    Neural Plast; 2016; 2016():9857201. PubMed ID: 27721996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-dependent plasticity of descending synaptic inputs to spinal motoneurons in an in vitro turtle brainstem-spinal cord preparation.
    Johnson SM; Mitchell GS
    J Neurosci; 2000 May; 20(9):3487-95. PubMed ID: 10777811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.