These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23360327)

  • 1. How "hollow" are hollow nanoparticles?
    Podsiadlo P; Kwon SG; Koo B; Lee B; Prakapenka VB; Dera P; Zhuravlev KK; Krylova G; Shevchenko EV
    J Am Chem Soc; 2013 Feb; 135(7):2435-8. PubMed ID: 23360327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold/Wüstite core-shell nanoparticles: suppression of iron oxidation through the electron-transfer phenomenon.
    Singh P; Mott DM; Maenosono S
    Chemphyschem; 2013 Oct; 14(14):3278-83. PubMed ID: 23913505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure.
    Das S; Paul A; Chattopadhyay A
    Nanoscale; 2013 Oct; 5(19):9247-54. PubMed ID: 23945656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH.
    Huang YF; Huang KM; Chang HT
    J Colloid Interface Sci; 2006 Sep; 301(1):145-54. PubMed ID: 16777126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically synthesized hollow nanostructures in iron oxides.
    Khurshid H; Li W; Tzitzios V; Hadjipanayis GC
    Nanotechnology; 2011 Jul; 22(26):265605. PubMed ID: 21576787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles.
    Mbenkum BN; Díaz-Ortiz A; Gu L; van Aken PA; Schütz G
    J Am Chem Soc; 2010 Aug; 132(31):10671-3. PubMed ID: 20681695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles.
    Zhang J; Post M; Veres T; Jakubek ZJ; Guan J; Wang D; Normandin F; Deslandes Y; Simard B
    J Phys Chem B; 2006 Apr; 110(14):7122-8. PubMed ID: 16599475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive fluorimetric biosensor for detection of DNA hybridization based on Fe/Au core/shell nanoparticles.
    Zhang Y; Wang Z; Jiang W
    Analyst; 2011 Feb; 136(4):702-7. PubMed ID: 21152620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications.
    Rai P; Yoon JW; Jeong HM; Hwang SJ; Kwak CH; Lee JH
    Nanoscale; 2014 Jul; 6(14):8292-9. PubMed ID: 24933405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step synthesis of core(Cr)/shell(gamma-Fe(2)O(3)) nanoparticles.
    Lai J; Shafi KV; Ulman A; Loos K; Popovitz-Biro R; Lee Y; Vogt T; Estournès C
    J Am Chem Soc; 2005 Apr; 127(16):5730-1. PubMed ID: 15839638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells.
    Yang P; Xu QZ; Jin SY; Zhao Y; Lu Y; Xu XW; Yu SH
    Chemistry; 2012 Jan; 18(4):1154-60. PubMed ID: 22190410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From core/shell to hollow Fe/γ-Fe₂O₃ nanoparticles: evolution of the magnetic behavior.
    Nemati Z; Khurshid H; Alonso J; Phan MH; Mukherjee P; Srikanth H
    Nanotechnology; 2015 Oct; 26(40):405705. PubMed ID: 26376675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How hollow structures form from crystalline iron-iron oxide core-shell nanoparticles in the electron beam.
    Herman DA; Cheong S; Banholzer MJ; Tilley RD
    Chem Commun (Camb); 2013 Jul; 49(55):6203-5. PubMed ID: 23732792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation.
    Park HY; Schadt MJ; Wang L; Lim II; Njoki PN; Kim SH; Jang MY; Luo J; Zhong CJ
    Langmuir; 2007 Aug; 23(17):9050-6. PubMed ID: 17629315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodispersed core-shell Fe3O4@Au nanoparticles.
    Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ
    J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.
    LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.
    Xing L; Ten Brink GH; Chen B; Schmidt FP; Haberfehlner G; Hofer F; Kooi BJ; Palasantzas G
    Nanotechnology; 2016 May; 27(21):215703. PubMed ID: 27089553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.