These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 23360330)
1. Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope. Koh AL; Gidcumb E; Zhou O; Sinclair R ACS Nano; 2013 Mar; 7(3):2566-72. PubMed ID: 23360330 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of Carbon Nanotubes in an Ionizing Environment. Koh AL; Gidcumb E; Zhou O; Sinclair R Nano Lett; 2016 Feb; 16(2):856-63. PubMed ID: 26726919 [TBL] [Abstract][Full Text] [Related]
3. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy. Chin SC; Chang YC; Chang CS Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489 [TBL] [Abstract][Full Text] [Related]
4. Healing and sealing carbon nanotubes--growth and closure within a transmission electron microscope. Edgar K; Tilley RD; Hendy SC; Schebarchov D Nanoscale; 2011 Apr; 3(4):1493-6. PubMed ID: 21394380 [TBL] [Abstract][Full Text] [Related]
5. Imaging active topological defects in carbon nanotubes. Suenaga K; Wakabayashi H; Koshino M; Sato Y; Urita K; Iijima S Nat Nanotechnol; 2007 Jun; 2(6):358-60. PubMed ID: 18654307 [TBL] [Abstract][Full Text] [Related]
6. How does a carbon nanotube grow? An in situ investigation on the cap evolution. Jin C; Suenaga K; Iijima S ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345 [TBL] [Abstract][Full Text] [Related]
7. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy. Koh AL; Sinclair R Ultramicroscopy; 2017 May; 176():132-138. PubMed ID: 27979618 [TBL] [Abstract][Full Text] [Related]
8. Electron field emission characteristics and field evaporation of a single carbon nanotube. Wang MS; Peng LM; Wang JY; Chen Q J Phys Chem B; 2005 Jan; 109(1):110-3. PubMed ID: 16850991 [TBL] [Abstract][Full Text] [Related]
9. Direct observation of six-membered rings in the upper and lower walls of a single-wall carbon nanotube by spherical aberration-corrected HRTEM. Hirahara K; Saitoh K; Yamasaki J; Tanaka N Nano Lett; 2006 Aug; 6(8):1778-83. PubMed ID: 16895373 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional evaluation of an independent multi-walled carbon nanotube probe by tomography with high-resolution transmission electron microscope. Tanigaki T; Hidaka K; Hirooka M; Nakata T J Electron Microsc (Tokyo); 2011; 60(1):19-24. PubMed ID: 20943676 [TBL] [Abstract][Full Text] [Related]
12. Dynamical observation of bamboo-like carbon nanotube growth. Lin M; Tan JP; Boothroyd C; Loh KP; Tok ES; Foo YL Nano Lett; 2007 Aug; 7(8):2234-8. PubMed ID: 17604403 [TBL] [Abstract][Full Text] [Related]
13. Transmission electron microscopy study of individual carbon nanotube breakdown caused by Joule heating in air. Mølhave K; Gudnason SB; Pedersen AT; Clausen CH; Horsewell A; Bøggild P Nano Lett; 2006 Aug; 6(8):1663-8. PubMed ID: 16895353 [TBL] [Abstract][Full Text] [Related]
14. A molecular linear motor consisting of carbon nanotubes. Somada H; Hirahara K; Akita S; Nakayama Y Nano Lett; 2009 Jan; 9(1):62-5. PubMed ID: 19032031 [TBL] [Abstract][Full Text] [Related]
15. Zirconia coating of carbon nanotubes by a hydrothermal method. Garmendia N; Bilbao L; Muñoz R; Imbuluzqueta G; García A; Bustero I; Calvo-Barrio L; Arbiol J; Obieta I J Nanosci Nanotechnol; 2008 Nov; 8(11):5678-83. PubMed ID: 19198288 [TBL] [Abstract][Full Text] [Related]