BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23360646)

  • 1. Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay.
    Phua SL; Yang L; Toh CL; Guoqiang D; Lau SK; Dasari A; Lu X
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1302-9. PubMed ID: 23360646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and properties of polypropylene/clay nanocomposites for food packaging.
    Choi RN; Cheigh CI; Lee SY; Chung MS
    J Food Sci; 2011 Oct; 76(8):N62-7. PubMed ID: 22417600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.
    Yang L; Phua SL; Teo JK; Toh CL; Lau SK; Ma J; Lu X
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3026-32. PubMed ID: 21728371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mechanical properties of polycarbonate modified clay nanocomposites.
    Guduri BR; Luyt AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1880-5. PubMed ID: 18572589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A plant fiber reinforced polymer composite prepared by a twin-screw extruder.
    Sui G; Fuqua MA; Ulven CA; Zhong WH
    Bioresour Technol; 2009 Feb; 100(3):1246-51. PubMed ID: 18842402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a small intestinal submucosa modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating for pelvic reconstruction.
    Ge L; Liu L; Wei H; Du L; Chen S; Huang Y; Huang R
    J Biomater Appl; 2016 Apr; 30(9):1385-91. PubMed ID: 26801474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials.
    Roy B; Bharali P; Konwar BK; Karak N
    Bioresour Technol; 2013 Jan; 127():175-80. PubMed ID: 23131638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.
    Vilaseca F; Valadez-Gonzalez A; Herrera-Franco PJ; Pèlach MA; López JP; Mutjé P
    Bioresour Technol; 2010 Jan; 101(1):387-95. PubMed ID: 19700312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste.
    Yao ZT; Chen T; Li HY; Xia MS; Ye Y; Zheng H
    J Hazard Mater; 2013 Nov; 262():212-7. PubMed ID: 24036146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of clay incorporation on the physical properties of polyethylene/Brazilian clay nanocomposites.
    Barbosa R; Araújo EM; Melo TJ; Ito EN; Hage EJ
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1937-41. PubMed ID: 18572596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.
    Martins AB; Santana RM
    Carbohydr Polym; 2016 Jan; 135():79-85. PubMed ID: 26453854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized wax as compatibilizer in linear low-density polyethylene-clay nanocomposites: x-ray diffraction and dynamic mechanical analysis.
    Geethamma VG; Luyt AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1886-94. PubMed ID: 18572590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.
    Mainil M; Alexandre M; Monteverde F; Dubois P
    J Nanosci Nanotechnol; 2006 Feb; 6(2):337-44. PubMed ID: 16573030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding.
    Phua SL; Yang L; Toh CL; Huang S; Tsakadze Z; Lau SK; Mai YW; Lu X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4571-8. PubMed ID: 22931194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcing effect of organo-modified layered silicates in high-density polyethylene.
    Modesti M; Besco S; Lorenzetti A; Zanirato G; Rauli F
    J Nanosci Nanotechnol; 2005 Jun; 5(6):958-63. PubMed ID: 16060160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method to improve the clarity and rheological properties of polymer/clay nanocomposites by using fractionated clay particles.
    Cipriano BH; Kashiwagi T; Zhang X; Raghavan SR
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):130-5. PubMed ID: 20355764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.
    Thakur VK; Vennerberg D; Kessler MR
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9349-56. PubMed ID: 24841134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New functionalized polypropylenes as controlled architecture compatibilizers for polypropylene layered silicates nanocomposites.
    Augier S; Coiai S; Pratelli D; Conzatti L; Passaglia E
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4858-69. PubMed ID: 19928162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites.
    Li HY; Tan YQ; Zhang L; Zhang YX; Song YH; Ye Y; Xia MS
    J Hazard Mater; 2012 May; 217-218():256-62. PubMed ID: 22476096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay.
    Tang C; Xiang L; Su J; Wang K; Yang C; Zhang Q; Fu Q
    J Phys Chem B; 2008 Apr; 112(13):3876-81. PubMed ID: 18335921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.