BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23360664)

  • 1. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability.
    de Groot GW; Santonicola MG; Sugihara K; Zambelli T; Reimhult E; Vörös J; Vancso GJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1400-7. PubMed ID: 23360664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart polymer brush nanostructures guide the self-assembly of pore-spanning lipid bilayers with integrated membrane proteins.
    de Groot GW; Demarche S; Santonicola MG; Tiefenauer L; Vancso GJ
    Nanoscale; 2014 Feb; 6(4):2228-37. PubMed ID: 24425208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the pH sensitivity of poly(methacrylic acid) brushes.
    Schüwer N; Klok HA
    Langmuir; 2011 Apr; 27(8):4789-96. PubMed ID: 21425827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(2-(dimethylamino)ethyl methacrylate)-modified nanoporous Colloidal films with pH and ion response.
    Schepelina O; Zharov I
    Langmuir; 2008 Dec; 24(24):14188-94. PubMed ID: 19053656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin, freestanding, stimuli-responsive, porous membranes from polymer hydrogel-brushes.
    Kang C; Ramakrishna SN; Nelson A; Cremmel CV; vom Stein H; Spencer ND; Isa L; Benetti EM
    Nanoscale; 2015 Aug; 7(30):13017-25. PubMed ID: 26169114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Two-Component, Brush-on-Brush Topographical Microstructures by Combination of Atom-Transfer Radical Polymerization with Polymer End-Functionalization and Photopatterning.
    Chapman P; Ducker RE; Hurley CR; Hobbs JK; Leggett GJ
    Langmuir; 2015 Jun; 31(21):5935-44. PubMed ID: 25938225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-responsive poly(methacrylic acid)-grafted hollow silica vesicles.
    Lay CL; Tan HR; Lu X; Liu Y
    Chemistry; 2011 Feb; 17(8):2504-9. PubMed ID: 21319241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems.
    Motornov M; Tam TK; Pita M; Tokarev I; Katz E; Minko S
    Nanotechnology; 2009 Oct; 20(43):434006. PubMed ID: 19801770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buried, covalently attached RGD peptide motifs in poly(methacrylic acid) brush layers: the effect of brush structure on cell adhesion.
    Navarro M; Benetti EM; Zapotoczny S; Planell JA; Vancso GJ
    Langmuir; 2008 Oct; 24(19):10996-1002. PubMed ID: 18767823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation behavior of weak polyelectrolyte brushes on a planar surface.
    Dong R; Lindau M; Ober CK
    Langmuir; 2009 Apr; 25(8):4774-9. PubMed ID: 19243153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic perspective on the function of thermoresponsive nanopores from in situ AFM and ATR-IR investigations.
    Popa AM; Angeloni S; Bürgi T; Hubbell JA; Heinzelmann H; Pugin R
    Langmuir; 2010 Oct; 26(19):15356-65. PubMed ID: 20822117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PNIPAAM-modified nanoporous colloidal films with positive and negative temperature gating.
    Schepelina O; Zharov I
    Langmuir; 2007 Dec; 23(25):12704-9. PubMed ID: 17975940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox active polymer brushes with phenothiazine moieties.
    Golriz AA; Kaule T; Untch MB; Kolman K; Berger R; Gutmann JS
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2485-94. PubMed ID: 23406201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.