BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 23360912)

  • 1. X-ray absorption spectroscopy and energy storage of Ni-doped cobalt nitride, (Ni(0.33)Co(0.67))N, prepared by a simple synthesis route.
    Das B; Reddy MV; Chowdari BV
    Nanoscale; 2013 Mar; 5(5):1961-6. PubMed ID: 23360912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries.
    Reddy MV; Prithvi G; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):680-90. PubMed ID: 24325322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling.
    Cherian CT; Zheng M; Reddy MV; Chowdari BV; Sow CH
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6054-60. PubMed ID: 23738585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling.
    Amaresh S; Kim GJ; Karthikeyan K; Aravindan V; Chung KY; Cho BW; Lee YS
    Phys Chem Chem Phys; 2012 Sep; 14(34):11904-9. PubMed ID: 22832971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step hydrothermal synthesis of submicron Li(1+x)Ni(0.5)Mn(1.5)O(4-δ) for lithium-ion battery cathodes (x = 0.02, δ = 0.12).
    Hao X; Austin MH; Bartlett BM
    Dalton Trans; 2012 Jul; 41(26):8067-76. PubMed ID: 22585259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and electrochemical characterization of nanocrystalline LI[Li0.12Ni0.32Mn(0.56)]O2 synthesized by a polymer-pyrolysis route.
    Yu L; Yang H; Ai X; Cao Y
    J Phys Chem B; 2005 Jan; 109(3):1148-54. PubMed ID: 16851074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors.
    Chang J; Sun J; Xu C; Xu H; Gao L
    Nanoscale; 2012 Nov; 4(21):6786-91. PubMed ID: 23001031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Li-cycling properties of molten salt method prepared nano/submicrometer and micrometer-sized CuO for lithium batteries.
    Reddy MV; Yu C; Jiahuan F; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2013 May; 5(10):4361-6. PubMed ID: 23621356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Binary Metal (Ni, Co) Selenite as Li-Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions.
    Park GD; Yang SJ; Lee JH; Kang YC
    Small; 2019 Dec; 15(51):e1905289. PubMed ID: 31736246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lithia and substrate on the electrochemical performance of a lithia/cobalt oxide composite thin-film anode.
    Yu Y; Shi Y; Chen CH
    Chem Asian J; 2006 Dec; 1(6):826-31. PubMed ID: 17441125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy.
    Yoon WS; Balasubramanian M; Chung KY; Yang XQ; McBreen J; Grey CP; Fischer DA
    J Am Chem Soc; 2005 Dec; 127(49):17479-87. PubMed ID: 16332100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage.
    Zhang HL; Li F; Liu C; Cheng HM
    Nanotechnology; 2008 Apr; 19(16):165606. PubMed ID: 21825650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.
    Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J
    Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material.
    Song B; Liu Z; Lai MO; Lu L
    Phys Chem Chem Phys; 2012 Oct; 14(37):12875-83. PubMed ID: 22892557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study.
    Okumura T; Fukutsuka T; Matsumoto K; Orikasa Y; Arai H; Ogumi Z; Uchimoto Y
    Dalton Trans; 2011 Oct; 40(38):9752-64. PubMed ID: 21869978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.