These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23361042)

  • 21. Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil.
    Wang Y; Xu J; Shan J; Ma Y; Ji R
    Environ Pollut; 2017 May; 224():377-383. PubMed ID: 28216135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation, classification and identification of non-extractable residues of
    Claßen D; Siedt M; Nguyen KT; Ackermann J; Schaeffer A
    Chemosphere; 2019 Oct; 232():164-170. PubMed ID: 31154176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of degradation routes of metamitron in soil microcosms using
    Wang S; Miltner A; Nowak KM
    Environ Pollut; 2017 Jan; 220(Pt B):927-935. PubMed ID: 27823863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation.
    Svenningsen H; Henriksen T; Priemé A; Johnsen AR
    Environ Pollut; 2011 Jun; 159(6):1599-605. PubMed ID: 21435762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant enhanced degradation of phenanthrene in the contaminated soil.
    Liao M; Xie XM
    J Environ Sci (China); 2006; 18(3):510-3. PubMed ID: 17294648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.
    Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z
    J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic.
    Schmidt B; Ebert J; Lamshöft M; Thiede B; Schumacher-Buffel R; Ji R; Corvini PF; Schäffer A
    J Environ Sci Health B; 2008 Jan; 43(1):8-20. PubMed ID: 18161568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of fluctuating soil humidity on in situ bioavailability and degradation of atrazine.
    Ngigi A; Dörfler U; Scherb H; Getenga Z; Boga H; Schroll R
    Chemosphere; 2011 Jul; 84(4):369-75. PubMed ID: 21531437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?
    Semple KT; Dew NM; Doick KJ; Rhodes AH
    Environ Pollut; 2006 Mar; 140(1):164-72. PubMed ID: 16112779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of 2,4-dichlorophenol, pentachlorophenol and vegetation on microbial characteristics in a heavy metal polluted soil.
    Lin Q; Zhao HM; Chen YX
    J Environ Sci Health B; 2007; 42(5):551-7. PubMed ID: 17562463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment.
    Min K; Freeman C; Kang H; Choi SU
    Biomed Res Int; 2015; 2015():825098. PubMed ID: 26495314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS.
    Cao S; Wang S; Zhao Y; Wang L; Ma Y; Schäffer A; Ji R
    Environ Int; 2020 Oct; 143():105908. PubMed ID: 32615349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Release of tetrabromobisphenol A (TBBPA)-derived non-extractable residues in oxic soil and the effects of the TBBPA-degrading bacterium Ochrobactrum sp. strain T.
    Wang S; Ling X; Wu X; Wang L; Li G; Corvini PF; Sun F; Ji R
    J Hazard Mater; 2019 Oct; 378():120666. PubMed ID: 31202065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the amendment of corn straw on the degradation behaviour of the fungicide dithianon in soil.
    Wanner U; Führ F; Burauel P
    Environ Pollut; 2005 Jan; 133(1):63-70. PubMed ID: 15327857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities.
    Girardi C; Greve J; Lamshöft M; Fetzer I; Miltner A; Schäffer A; Kästner M
    J Hazard Mater; 2011 Dec; 198():22-30. PubMed ID: 22036930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration.
    Rauch-Williams T; Drewes JE
    Water Res; 2006 Mar; 40(5):961-8. PubMed ID: 16483630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A short-term study on the interaction of bacteria, fungi and endosulfan in soil microcosm.
    Xie H; Gao F; Tan W; Wang SG
    Sci Total Environ; 2011 Dec; 412-413():375-9. PubMed ID: 22075157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.
    Odlare M; Pell M; Svensson K
    Waste Manag; 2008; 28(7):1246-53. PubMed ID: 17697770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues.
    Mordaunt CJ; Gevao B; Jones KC; Semple KT
    Environ Pollut; 2005 Jan; 133(1):25-34. PubMed ID: 15327853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic fate of the (14)C-labeled herbicide clodinafop-propargyl in soil.
    Jaquet J; Weitzel P; Junge T; Schmidt B
    J Environ Sci Health B; 2014; 49(4):245-54. PubMed ID: 24502211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.