These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23361091)

  • 1. A third-generation method reveals cell lineage ancestry.
    Feinberg AP
    Nat Methods; 2013 Feb; 10(2):117-8. PubMed ID: 23361091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Installation of Succinyl Lysine Analog into Histones Reveals the Effect of H2BK34 Succinylation on Nucleosome Dynamics.
    Jing Y; Liu Z; Tian G; Bao X; Ishibashi T; Li XD
    Cell Chem Biol; 2018 Feb; 25(2):166-174.e7. PubMed ID: 29249693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H3K36me3 key to Polycomb-mediated gene silencing in lineage specification.
    Abed JA; Jones RS
    Nat Struct Mol Biol; 2012 Dec; 19(12):1214-5. PubMed ID: 23211767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Circadian rhythm of the ratio of arginine- and lysine-rich histones in the neurons and their glial cell satellites of the reticular formation].
    Raĭgorodskaia TG
    Tsitologiia; 1974 Dec; 16(12):1514-7. PubMed ID: 4439494
    [No Abstract]   [Full Text] [Related]  

  • 5. Symmetrical modification within a nucleosome is not required globally for histone lysine methylation.
    Chen X; Xiong J; Xu M; Chen S; Zhu B
    EMBO Rep; 2011 Mar; 12(3):244-51. PubMed ID: 21331095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. γ-Thialysine versus Lysine: An Insight into the Epigenetic Methylation of Histones.
    Al Temimi AHK; van der Wekken-de Bruijne R; Proietti G; Guo H; Qian P; Mecinović J
    Bioconjug Chem; 2019 Jun; 30(6):1798-1804. PubMed ID: 31117351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-nitrosation and denitrosation on lysine residues of histones.
    Kuo WN; Ivy D; Robinson MJ
    Front Biosci; 2004 Jan; 9():187-91. PubMed ID: 14766358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N epsilon-Methyl groups on the lysine residues in histones turn over independently of the polypeptide backbone.
    Hempel K; Thomas G; Roos G; Stöcker W; Lange HW
    Hoppe Seylers Z Physiol Chem; 1979 Jul; 360(7):869-76. PubMed ID: 488912
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetically directing ɛ-N, N-dimethyl-L-lysine in recombinant histones.
    Nguyen DP; Garcia Alai MM; Virdee S; Chin JW
    Chem Biol; 2010 Oct; 17(10):1072-6. PubMed ID: 21035729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic evaluation of the compatibility of histones containing methyl-lysine analogues with biochemical reactions.
    Jia G; Wang W; Li H; Mao Z; Cai G; Sun J; Wu H; Xu M; Yang P; Yuan W; Chen S; Zhu B
    Cell Res; 2009 Oct; 19(10):1217-20. PubMed ID: 19770845
    [No Abstract]   [Full Text] [Related]  

  • 11. How do histone acetyltransferases select lysine residues in core histones?
    Kimura A; Horikoshi M
    FEBS Lett; 1998 Jul; 431(2):131-3. PubMed ID: 9708888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in 3H-thymidine incorporation into the DNA by histones from normal and tumor tissues.
    Holoubek V; Hnilica LS
    J Natl Cancer Inst; 1967 Aug; 39(2):187-91. PubMed ID: 18623938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone H4 lysine 16 acetylation breaks the genome's silence.
    Shia WJ; Pattenden SG; Workman JL
    Genome Biol; 2006; 7(5):217. PubMed ID: 16689998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6.
    Michishita E; McCord RA; Boxer LD; Barber MF; Hong T; Gozani O; Chua KF
    Cell Cycle; 2009 Aug; 8(16):2664-6. PubMed ID: 19625767
    [No Abstract]   [Full Text] [Related]  

  • 15. Generation and characterization of methyl-lysine histone antibodies.
    Perez-Burgos L; Peters AH; Opravil S; Kauer M; Mechtler K; Jenuwein T
    Methods Enzymol; 2004; 376():234-54. PubMed ID: 14975310
    [No Abstract]   [Full Text] [Related]  

  • 16. Histone lysine methylation and chromatin replication.
    Rivera C; Gurard-Levin ZA; Almouzni G; Loyola A
    Biochim Biophys Acta; 2014 Dec; 1839(12):1433-9. PubMed ID: 24686120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steps toward understanding the inheritance of repressive methyl-lysine marks in histones.
    Reinberg D; Chuikov S; Farnham P; Karachentsev D; Kirmizis A; Kuzmichev A; Margueron R; Nishioka K; Preissner TS; Sarma K; Abate-Shen C; Steward R; Vaquero A
    Cold Spring Harb Symp Quant Biol; 2004; 69():171-82. PubMed ID: 16117647
    [No Abstract]   [Full Text] [Related]  

  • 18. The control of histone lysine methylation in epigenetic regulation.
    Völkel P; Angrand PO
    Biochimie; 2007 Jan; 89(1):1-20. PubMed ID: 16919862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of the main chain of lysine for histone lysine methyltransferase catalysis.
    Al Temimi AHK; Teeuwen RS; Tran V; Altunc AJ; Lenstra DC; Ren W; Qian P; Guo H; Mecinović J
    Org Biomol Chem; 2019 Jun; 17(23):5693-5697. PubMed ID: 31134245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple site-specific installations of Nε-monomethyl-L-lysine into histone proteins by cell-based and cell-free protein synthesis.
    Yanagisawa T; Takahashi M; Mukai T; Sato S; Wakamori M; Shirouzu M; Sakamoto K; Umehara T; Yokoyama S
    Chembiochem; 2014 Aug; 15(12):1830-8. PubMed ID: 25067793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.