These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 23361313)
1. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Li C; Yamauchi Y Phys Chem Chem Phys; 2013 Mar; 15(10):3490-6. PubMed ID: 23361313 [TBL] [Abstract][Full Text] [Related]
2. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst. Wang S; Kristian N; Jiang S; Wang X Nanotechnology; 2009 Jan; 20(2):025605. PubMed ID: 19417274 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction. Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896 [TBL] [Abstract][Full Text] [Related]
4. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction. Chen D; Ye F; Liu H; Yang J Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897 [TBL] [Abstract][Full Text] [Related]
5. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core. Zeng J; Yang J; Lee JY; Zhou W J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221 [TBL] [Abstract][Full Text] [Related]
6. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
7. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332 [TBL] [Abstract][Full Text] [Related]
8. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency. Sui N; Wang K; Shan X; Bai Q; Wang L; Xiao H; Liu M; Colvin VL; Yu WW Dalton Trans; 2017 Nov; 46(44):15541-15548. PubMed ID: 29091089 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen. Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312 [TBL] [Abstract][Full Text] [Related]
10. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
12. A bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. Yang J; Lee JY; Too HP; Valiyaveettil S J Phys Chem B; 2006 Jan; 110(1):125-9. PubMed ID: 16471509 [TBL] [Abstract][Full Text] [Related]
13. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light-scattering techniques. Chen L; Zhao W; Jiao Y; He X; Wang J; Zhang Y Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):484-90. PubMed ID: 17329151 [TBL] [Abstract][Full Text] [Related]
15. Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS. Sivakov VA; Höflich K; Becker M; Berger A; Stelzner T; Elers KE; Pore V; Ritala M; Christiansen SH Chemphyschem; 2010 Jun; 11(9):1995-2000. PubMed ID: 20446286 [TBL] [Abstract][Full Text] [Related]
16. Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction. Feng YY; Zhang GR; Ma JH; Liu G; Xu BQ Phys Chem Chem Phys; 2011 Mar; 13(9):3863-72. PubMed ID: 21210027 [TBL] [Abstract][Full Text] [Related]
17. A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M=Pd, Pt; oxide=TiO2, ZrO2) nanostructures by self-assembly. Bakhmutsky K; Wieder NL; Cargnello M; Galloway B; Fornasiero P; Gorte RJ ChemSusChem; 2012 Jan; 5(1):140-8. PubMed ID: 22250137 [TBL] [Abstract][Full Text] [Related]
18. Controlled aqueous solution synthesis of platinum-palladium alloy nanodendrites with various compositions using amphiphilic triblock copolymers. Wang L; Yamauchi Y Chem Asian J; 2010 Dec; 5(12):2493-8. PubMed ID: 20853393 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design. Feng Y; Ye F; Liu H; Yang J Sci Rep; 2015 Nov; 5():16219. PubMed ID: 26578100 [TBL] [Abstract][Full Text] [Related]
20. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Wang DH; Wang L; Xu AW Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]