These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23361355)

  • 1. Microfluidic fabrication of photo-responsive hydrogel capsules.
    Kim B; Soo Lee H; Kim J; Kim SH
    Chem Commun (Camb); 2013 Mar; 49(18):1865-7. PubMed ID: 23361355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermal control of membrane permeability of microcapsules for on-demand release.
    Jeong WC; Kim SH; Yang SM
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):826-32. PubMed ID: 24372148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymersomes containing a hydrogel network for high stability and controlled release.
    Kim SH; Kim JW; Kim DH; Han SH; Weitz DA
    Small; 2013 Jan; 9(1):124-31. PubMed ID: 22961742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave, photo- and thermally responsive PNIPAm-gold nanoparticle microgels.
    Budhlall BM; Marquez M; Velev OD
    Langmuir; 2008 Oct; 24(20):11959-66. PubMed ID: 18817426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of monodisperse liposomes-in-microgel hybrid microparticles in capillary-based microfluidic devices.
    Jeong ES; Son HA; Kim MK; Park KH; Kay S; Chae PS; Kim JW
    Colloids Surf B Biointerfaces; 2014 Nov; 123():339-44. PubMed ID: 25288532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface-directed self-assembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization.
    Tian J; Yuan L; Zhang M; Zheng F; Xiong Q; Zhao H
    Langmuir; 2012 Jun; 28(25):9365-71. PubMed ID: 22620973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation.
    Mathiyazhakan M; Yang Y; Liu Y; Zhu C; Liu Q; Ohl CD; Tam KC; Gao Y; Xu C
    Colloids Surf B Biointerfaces; 2015 Feb; 126():569-74. PubMed ID: 25481686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device.
    Deng Y; Zhang N; Zhao L; Yu X; Ji X; Liu W; Guo S; Liu K; Zhao XZ
    Lab Chip; 2011 Dec; 11(23):4117-21. PubMed ID: 22012540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic fabrication of stable nanoparticle-shelled bubbles.
    Lee MH; Prasad V; Lee D
    Langmuir; 2010 Feb; 26(4):2227-30. PubMed ID: 20039657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels.
    Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S
    Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules.
    Cejková J; Hanus J; Stepánek F
    J Colloid Interface Sci; 2010 Jun; 346(2):352-60. PubMed ID: 20304409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.
    Yoo I; Song S; Yoon B; Kim JM
    Macromol Rapid Commun; 2012 Aug; 33(15):1256-61. PubMed ID: 22528762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release.
    Zhang L; Cai LH; Lienemann PS; Rossow T; Polenz I; Vallmajo-Martin Q; Ehrbar M; Na H; Mooney DJ; Weitz DA
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13470-13474. PubMed ID: 27717141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling release from pH-responsive microcapsules.
    Abbaspourrad A; Datta SS; Weitz DA
    Langmuir; 2013 Oct; 29(41):12697-702. PubMed ID: 24041287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.