BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23361377)

  • 1. Ligations of N-acyl tryptophan units to give native peptides via 7-, 10-, 11- and 12-membered cyclic transition states.
    Popov V; Panda SS; Katritzky AR
    Org Biomol Chem; 2013 Feb; 11(10):1594-7. PubMed ID: 23361377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range chemical ligation from N→N acyl migrations in tryptophan peptides via cyclic transition states of 10- to 18-members.
    Biswas S; Kayaleh R; Pillai GG; Seon C; Roberts I; Popov V; Alamry KA; Katritzky AR
    Chemistry; 2014 Jun; 20(26):8189-98. PubMed ID: 24824842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligations from tyrosine isopeptides via 12- to 19-membered cyclic transition states.
    Popov V; Panda SS; Katritzky AR
    J Org Chem; 2013 Aug; 78(15):7455-61. PubMed ID: 23758522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S- to N-Acyl transfer in S-acylcysteine isopeptides via 9-, 10-, 12-, and 13-membered cyclic transition states.
    Bol'shakov O; Kovacs J; Chahar M; Ha K; Khelashvili L; Katritzky AR
    J Pept Sci; 2012 Nov; 18(11):704-9. PubMed ID: 23065784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chemical ligation of selectively S-acylated cysteine peptides to form native peptides via 5-, 11- and 14-membered cyclic transition states.
    Katritzky AR; Abo-Dya NE; Tala SR; Abdel-Samii ZK
    Org Biomol Chem; 2010 May; 8(10):2316-9. PubMed ID: 20372743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states.
    Katritzky AR; Tala SR; Abo-Dya NE; Ibrahim TS; El-Feky SA; Gyanda K; Pandya KM
    J Org Chem; 2011 Jan; 76(1):85-96. PubMed ID: 21158395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of chemical ligation via 17-, 18- and 19-membered cyclic transition states.
    Panda SS; El-Nachef C; Bajaj K; Al-Youbi AO; Oliferenko A; Katritzky AR
    Chem Biol Drug Des; 2012 Dec; 80(6):821-7. PubMed ID: 22974460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted chemical ligation of S-acyl peptides containing non-terminal cysteine residues.
    Hansen FK; Ha K; Todadze E; Lillicotch A; Frey A; Katritzky AR
    Org Biomol Chem; 2011 Oct; 9(20):7162-7. PubMed ID: 21879126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of O-acyl isopeptides.
    Sohma Y; Kiso Y
    Chem Rec; 2013 Apr; 13(2):218-23. PubMed ID: 23512813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-N intramolecular acyl migration reaction in the development of prodrugs and the synthesis of difficult sequence-containing bioactive peptides.
    Sohma Y; Hayashi Y; Skwarczynski M; Hamada Y; Sasaki M; Kimura T; Kiso Y
    Biopolymers; 2004; 76(4):344-56. PubMed ID: 15386265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traceless chemical ligations from O-acyl serine sites.
    El Khatib M; Elagawany M; Jabeen F; Todadze E; Bol'shakov O; Oliferenko A; Khelashvili L; el-Feky SA; Asiri A; Katritzky AR
    Org Biomol Chem; 2012 Jul; 10(25):4836-8. PubMed ID: 22635203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of O-acyl isopeptide method.
    Sohma Y; Yoshiya T; Taniguchi A; Kimura T; Hayashi Y; Kiso Y
    Biopolymers; 2007; 88(2):253-62. PubMed ID: 17236207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range intramolecular S → N acyl migration: a study of the formation of native peptide analogues via 13-, 15-, and 16-membered cyclic transition states.
    Ha K; Chahar M; Monbaliu JC; Todadze E; Hansen FK; Oliferenko AA; Ocampo CE; Leino D; Lillicotch A; Stevens CV; Katritzky AR
    J Org Chem; 2012 Mar; 77(6):2637-48. PubMed ID: 22283871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epimerization-free synthesis of cyclic peptide by use of the O-acyl isopeptide method.
    Yoshiya T; Kawashima H; Hasegawa Y; Okamoto K; Kimura T; Sohma Y; Kiso Y
    J Pept Sci; 2010 Aug; 16(8):437-42. PubMed ID: 20623499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of an O-acyl isopeptide by using native chemical ligation in an aqueous solvent system.
    Kawashima H; Kuruma T; Yamashita M; Sohma Y; Akaji K
    J Pept Sci; 2014 May; 20(5):361-5. PubMed ID: 24596115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer.
    Panda SS; Jones RA; Hall CD; Katritzky AR
    Top Curr Chem; 2015; 362():229-65. PubMed ID: 25805142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Unprotected Linear or Cyclic O-Acyl Isopeptides in Water Using Bis(2-sulfanylethyl)amido Peptide Ligation.
    Desmet R; Pauzuolis M; Boll E; Drobecq H; Raibaut L; Melnyk O
    Org Lett; 2015 Jul; 17(13):3354-7. PubMed ID: 26075704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric synthesis of the central tryptophan residue of stephanotic acid.
    Bentley DJ; Moody CJ
    Org Biomol Chem; 2004 Dec; 2(24):3545-7. PubMed ID: 15592611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of acylation of a Peptide corresponding to the amino-terminal region of endothelial nitric oxide synthase on the interaction with model membranes.
    Yélamos B; Roncal F; Albar JP; Rodríguez-Crespo I; Gavilanes F
    Biochemistry; 2006 Jan; 45(4):1263-70. PubMed ID: 16430222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.