These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 23361439)
1. Can we control the electronic energy transfer in molecular dyads through metal nanoparticles? A QM/continuum investigation. Angioni A; Corni S; Mennucci B Phys Chem Chem Phys; 2013 Mar; 15(9):3294-303. PubMed ID: 23361439 [TBL] [Abstract][Full Text] [Related]
2. Excitation energy transfer in ion pairs of polymethine cyanine dyes: efficiency and dynamics. Ponterini G; Fiorini M; Vanossi D; Tatikolov AS; Momicchioli F J Phys Chem A; 2006 Jun; 110(24):7527-38. PubMed ID: 16774193 [TBL] [Abstract][Full Text] [Related]
3. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. Saini S; Srinivas G; Bagchi B J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigation of electronic excitation energy transfer in bichromophoric assemblies. Fückel B; Köhn A; Harding ME; Diezemann G; Hinze G; Basché T; Gauss J J Chem Phys; 2008 Feb; 128(7):074505. PubMed ID: 18298155 [TBL] [Abstract][Full Text] [Related]
5. Density matrix based microscopic theory of molecule metal-nanoparticle interactions: linear absorbance and plasmon enhancement of intermolecular excitation energy transfer. Kyas G; May V J Chem Phys; 2011 Jan; 134(3):034701. PubMed ID: 21261378 [TBL] [Abstract][Full Text] [Related]
6. Length dependence for intramolecular energy transfer in three- and four-color donor-spacer-acceptor arrays. Harriman A; Mallon LJ; Elliot KJ; Haefele A; Ulrich G; Ziessel R J Am Chem Soc; 2009 Sep; 131(37):13375-86. PubMed ID: 19754187 [TBL] [Abstract][Full Text] [Related]
7. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap. Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837 [TBL] [Abstract][Full Text] [Related]
8. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy. Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870 [TBL] [Abstract][Full Text] [Related]
9. The mediated excitation energy transfer: Effects of bridge polarizability. Chen HC; You ZQ; Hsu CP J Chem Phys; 2008 Aug; 129(8):084708. PubMed ID: 19044842 [TBL] [Abstract][Full Text] [Related]
10. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Rosokha SV; Kochi JK Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446 [TBL] [Abstract][Full Text] [Related]
11. Quantum-Chemical Studies on Excitation Energy Transfer Processes in BODIPY-Based Donor-Acceptor Systems. Spiegel JD; Kleinschmidt M; Larbig A; Tatchen J; Marian CM J Chem Theory Comput; 2015 Sep; 11(9):4316-27. PubMed ID: 26575926 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis, and photophysical studies of a porphyrin-fullerene dyad with parachute topology; charge recombination in the marcus inverted region. Schuster DI; Cheng P; Jarowski PD; Guldi DM; Luo C; Echegoyen L; Pyo S; Holzwarth AR; Braslavsky SE; Williams RM; Klihm G J Am Chem Soc; 2004 Jun; 126(23):7257-70. PubMed ID: 15186163 [TBL] [Abstract][Full Text] [Related]
13. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
14. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
15. Bridge-mediated excitation energy transfer pathways through protein media: a Slater determinant-based electronic coupling calculation combined with localized molecular orbitals. Kawatsu T; Matsuda K; Hasegawa JY J Phys Chem A; 2011 Oct; 115(39):10814-22. PubMed ID: 21861486 [TBL] [Abstract][Full Text] [Related]
16. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543 [TBL] [Abstract][Full Text] [Related]
17. Energy transfer and fluorescence quenching in complexes of polymethine dyes with human serum albumin. Tatikolov AS; Costa SM Photochem Photobiol; 2004; 80(2):250-6. PubMed ID: 15362936 [TBL] [Abstract][Full Text] [Related]
18. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: the electronic Davydov splittings cannot match experiment. Ottiger P; Leutwyler S; Köppel H J Chem Phys; 2012 May; 136(17):174308. PubMed ID: 22583231 [TBL] [Abstract][Full Text] [Related]
19. The electronic couplings in electron transfer and excitation energy transfer. Hsu CP Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069 [TBL] [Abstract][Full Text] [Related]
20. Excitation Dynamics in Hetero-bichromophoric Calixarene Systems. Tosi I; Segado Centellas M; Campioli E; Iagatti A; Lapini A; Sissa C; Baldini L; Cappelli C; Di Donato M; Sansone F; Santoro F; Terenziani F Chemphyschem; 2016 Jun; 17(11):1686-706. PubMed ID: 26867716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]