These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23361890)

  • 1. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.
    Schöpf L; Mautz J; Sandmann G
    Planta; 2013 May; 237(5):1279-85. PubMed ID: 23361890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin.
    Steiger S; Sandmann G
    Biotechnol Lett; 2004 May; 26(10):813-7. PubMed ID: 15269553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N
    Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of light-dependent keto carotenoid biosynthesis in Nostoc 7120 by the transcription factor NtcA.
    Sandmann G; Mautz J; Breitenbach J
    Z Naturforsch C J Biosci; 2016 Sep; 71(9-10):303-311. PubMed ID: 27564697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel beta-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis.
    Tao L; Cheng Q
    Mol Genet Genomics; 2004 Dec; 272(5):530-7. PubMed ID: 15538629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved production of echinenone and canthaxanthin in transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme.
    Gao X; Xu H; Zhu Z; She Y; Ye S
    Microbiol Res; 2020 Jun; 236():126455. PubMed ID: 32179389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myxol and 4-ketomyxol 2'-fucosides, not rhamnosides, from Anabaena sp. PCC 7120 and Nostoc punctiforme PCC 73102, and proposal for the biosynthetic pathway of carotenoids.
    Takaichi S; Mochimaru M; Maoka T; Katoh H
    Plant Cell Physiol; 2005 Mar; 46(3):497-504. PubMed ID: 15695449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of growth temperature on biosynthesis and accumulation of carotenoids in cyanobacterium Anabaena sp. PCC 7120 under diazotrophic conditions.
    Kłodawska K; Bujas A; Turos-Cabal M; Żbik P; Fu P; Malec P
    Microbiol Res; 2019 Sep; 226():34-40. PubMed ID: 31284942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cyanobacterium Anabaena sp. PCC 7120 has two distinct beta-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesis.
    Mochimaru M; Masukawa H; Takaichi S
    FEBS Lett; 2005 Nov; 579(27):6111-4. PubMed ID: 16242129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in Methylomonas sp.
    Tang XS; Shyr J; Tao L; Sedkova N; Cheng Q
    Metab Eng; 2007 Jul; 9(4):348-54. PubMed ID: 17627860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic properties and reaction mechanism of the CrtO carotenoid ketolase from the cyanobacterium Synechocystis sp. PCC 6803.
    Breitenbach J; Gerjets T; Sandmann G
    Arch Biochem Biophys; 2013 Jan; 529(2):86-91. PubMed ID: 23220023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new type of asymmetrically acting beta-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803.
    Fernández-González B; Sandmann G; Vioque A
    J Biol Chem; 1997 Apr; 272(15):9728-33. PubMed ID: 9092504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two beta-carotene ketolases, CrtO and CrtW, by complementation analysis in Escherichia coli.
    Choi SK; Harada H; Matsuda S; Misawa N
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1335-41. PubMed ID: 17415558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canthaxanthin biosynthesis by the conversion of methylene to keto groups in a hydrocarbon beta-carotene by a single gene.
    Misawa N; Kajiwara S; Kondo K; Yokoyama A; Satomi Y; Saito T; Miki W; Ohtani T
    Biochem Biophys Res Commun; 1995 Apr; 209(3):867-76. PubMed ID: 7733978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin.
    Ye RW; Stead KJ; Yao H; He H
    Appl Environ Microbiol; 2006 Sep; 72(9):5829-37. PubMed ID: 16957201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, Regulation and Degradation of Carotenoids Under Low Level UV-B Radiation in the Filamentous Cyanobacterium
    Llewellyn CA; Airs RL; Farnham G; Greig C
    Front Microbiol; 2020; 11():163. PubMed ID: 32117174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin.
    Lemuth K; Steuer K; Albermann C
    Microb Cell Fact; 2011 Apr; 10():29. PubMed ID: 21521516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis.
    Lotan T; Hirschberg J
    FEBS Lett; 1995 May; 364(2):125-8. PubMed ID: 7750556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canthaxanthin production with modified Mucor circinelloides strains.
    Papp T; Csernetics A; Nagy G; Bencsik O; Iturriaga EA; Eslava AP; Vágvölgyi C
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4937-50. PubMed ID: 23224586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Escherichia coli for canthaxanthin and astaxanthin biosynthesis.
    Cheng Q; Tao L
    Methods Mol Biol; 2012; 892():143-58. PubMed ID: 22623300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.