BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23361943)

  • 21. Intestinal Saturated Long-Chain Fatty Acid, Glucose and Fructose Transporters and Their Inhibition by Natural Plant Extracts in Caco-2 Cells.
    Schreck K; Melzig MF
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30301205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells.
    Johnston K; Sharp P; Clifford M; Morgan L
    FEBS Lett; 2005 Mar; 579(7):1653-7. PubMed ID: 15757656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.
    Blaschek W
    Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids.
    Kwon O; Eck P; Chen S; Corpe CP; Lee JH; Kruhlak M; Levine M
    FASEB J; 2007 Feb; 21(2):366-77. PubMed ID: 17172639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antidiabetic potential of Lysiphyllum strychnifolium (Craib) A. Schmitz compounds in human intestinal epithelial Caco-2 cells and molecular docking-based approaches.
    Noonong K; Pranweerapaiboon K; Chaithirayanon K; Surayarn K; Ditracha P; Changklungmoa N; Kueakhai P; Hiransai P; Bunluepuech K
    BMC Complement Med Ther; 2022 Sep; 22(1):235. PubMed ID: 36064352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia.
    Nistor Baldea LA; Martineau LC; Benhaddou-Andaloussi A; Arnason JT; Lévy É; Haddad PS
    J Ethnopharmacol; 2010 Nov; 132(2):473-82. PubMed ID: 20804840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ethanol extract of Eucommia ulmoides Oliv. leaves inhibits disaccharidase and glucose transport in Caco-2 cells.
    Zhang Y; Zhang H; Wang F; Yang D; Ding K; Fan J
    J Ethnopharmacol; 2015 Apr; 163():99-105. PubMed ID: 25620383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism.
    Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E
    J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific Lactobacillus probiotic strains decrease transepithelial glucose transport through GLUT2 downregulation in intestinal epithelial cell models.
    Primec M; Škorjanc D; Langerholc T; Mičetić-Turk D; Gorenjak M
    Nutr Res; 2021 Feb; 86():10-22. PubMed ID: 33450655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antioxidant and Anti-Diabetic Functions of a Polyphenol-Rich Sugarcane Extract.
    Ji J; Yang X; Flavel M; Shields ZP; Kitchen B
    J Am Coll Nutr; 2019; 38(8):670-680. PubMed ID: 31008696
    [No Abstract]   [Full Text] [Related]  

  • 31. Intestinal absorption of glucose in mice as determined by positron emission tomography.
    Sala-Rabanal M; Ghezzi C; Hirayama BA; Kepe V; Liu J; Barrio JR; Wright EM
    J Physiol; 2018 Jul; 596(13):2473-2489. PubMed ID: 29707805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mulberry leaf polyphenols attenuated postprandial glucose absorption via inhibition of disaccharidases activity and glucose transport in Caco-2 cells.
    Li Q; Wang C; Liu F; Hu T; Shen W; Li E; Liao S; Zou Y
    Food Funct; 2020 Feb; 11(2):1835-1844. PubMed ID: 32064488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SGLT1-Mediated Transport in Caco-2 Cells Is Highly Dependent on Cell Bank Origin.
    Steffansen B; Pedersen MDL; Laghmoch AM; Nielsen CU
    J Pharm Sci; 2017 Sep; 106(9):2664-2670. PubMed ID: 28454747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absence of evidence of translocation of GLUT2 to the apical membrane of enterocytes in everted intestinal sleeves.
    Scow JS; Iqbal CW; Jones TW; Qandeel HG; Zheng Y; Duenes JA; Nagao M; Madhavan S; Sarr MG
    J Surg Res; 2011 May; 167(1):56-61. PubMed ID: 20739033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Na
    Chan LKY; Wang Y; Ng EKW; Leung PS
    Diabetes Obes Metab; 2018 Mar; 20(3):709-717. PubMed ID: 29110392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch.
    Lohrenz AK; Duske K; Schönhusen U; Losand B; Seyfert HM; Metges CC; Hammon HM
    J Dairy Sci; 2011 Sep; 94(9):4546-55. PubMed ID: 21854927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids.
    Gauer JS; Tumova S; Lippiat JD; Kerimi A; Williamson G
    Biochem Pharmacol; 2018 Jun; 152():11-20. PubMed ID: 29548810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ghrelin Facilitates GLUT2-, SGLT1- and SGLT2-mediated Intestinal Glucose Transport in Goldfish (Carassius auratus).
    Blanco AM; Bertucci JI; Ramesh N; Delgado MJ; Valenciano AI; Unniappan S
    Sci Rep; 2017 Mar; 7():45024. PubMed ID: 28338019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing.
    Röder PV; Geillinger KE; Zietek TS; Thorens B; Koepsell H; Daniel H
    PLoS One; 2014; 9(2):e89977. PubMed ID: 24587162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2, leading to cell depolarization and calcium influx.
    Kuhre RE; Bechmann LE; Wewer Albrechtsen NJ; Hartmann B; Holst JJ
    Am J Physiol Endocrinol Metab; 2015 Jun; 308(12):E1123-30. PubMed ID: 25898949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.