These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2336197)

  • 1. Evidence for light-induced release of Ca2+ from intracellular stores in bee photoreceptors.
    Ziegler A; Walz B
    Neurosci Lett; 1990 Mar; 111(1-2):87-91. PubMed ID: 2336197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of sensitivity in photoreceptors of the honey been drone by light and by Ca2+.
    Walz B
    J Comp Physiol A; 1992 Jun; 170(5):605-13. PubMed ID: 1507158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes.
    Levy S; Fein A
    J Gen Physiol; 1985 Jun; 85(6):805-41. PubMed ID: 3926944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors.
    Walz B; Baumann O; Zimmermann B; Ciriacy-Wantrup EV
    J Gen Physiol; 1995 Apr; 105(4):537-67. PubMed ID: 7608657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lingering elevation of Cai accompanies inhibition of inositol 1,4,5 trisphosphate-induced Ca release in Limulus ventral photoreceptors.
    Levy S; Payne R
    J Gen Physiol; 1993 Jan; 101(1):67-84. PubMed ID: 8436942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response to monochromatic light flashes of the oxygen consumption of honeybee drone photoreceptors.
    Jones GJ; Tsacopoulos M
    J Gen Physiol; 1987 May; 89(5):791-813. PubMed ID: 3598560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of extracellular calcium and of light adaptation on the response to dim light in honey bee drone photoreceptors.
    Raggenbass M
    J Physiol; 1983 Nov; 344():525-48. PubMed ID: 6655592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride enters glial cells and photoreceptors in response to light stimulation in the retina of the honey bee drone.
    Coles JA; Orkand RK; Yamate CL
    Glia; 1989; 2(5):287-97. PubMed ID: 2530169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors.
    Bolsover SR; Brown JE
    J Physiol; 1985 Jul; 364():381-93. PubMed ID: 3928878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nss mutation or lanthanum inhibits light-induced Ca2+ influx into fly photoreceptors.
    Rom-Glas A; Sandler C; Kirschfeld K; Minke B
    J Gen Physiol; 1992 Nov; 100(5):767-81. PubMed ID: 1335476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adapting lights and lowered extracellular free calcium desensitize toad photoreceptors by differing mechanisms.
    Greenblatt RE
    J Physiol; 1983 Mar; 336():579-605. PubMed ID: 6410053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L).
    Bader C; Baumann F; Bertrand D
    J Gen Physiol; 1976 Apr; 67(4):475-91. PubMed ID: 818341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina.
    Minke B; Tsacopoulos M
    Vision Res; 1986; 26(5):679-90. PubMed ID: 3750848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent repetitive Ca2+ spikes induced by extracellular application of neomycin in honeybee drone photoreceptors.
    Walz B; Zimmermann B; Ukhanov K
    J Comp Physiol A; 2000 May; 186(5):497-503. PubMed ID: 10879952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina.
    Coles JA; Orkand RK
    J Physiol; 1985 May; 362():415-35. PubMed ID: 4020694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+.
    Coles JA; Marcaggi P; VĂ©ga C; Cotillon N
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):305-18. PubMed ID: 8887745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actions of EGTA and high calcium on the cones in the turtle retina.
    Bertrand D; Fuortes MG; Pochobradsky J
    J Physiol; 1978 Feb; 275():419-37. PubMed ID: 416204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-evoked changes in extracellular calcium concentration in frog retina.
    Livsey CT; Huang B; Xu J; Karwoski CJ
    Vision Res; 1990; 30(6):853-61. PubMed ID: 2385926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of fluorides-stimulated and non-fluoride-stimulated components of beef brain cortex adenylate cyclase cy calcium ions, ethyleneglycol-bis-(beta-aminoethyl ether) N,N'-tetraacetic acid and Triton X-100.
    MacDonald IA
    Biochim Biophys Acta; 1975 Jul; 397(1):244-53. PubMed ID: 167852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.