These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23362087)
1. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation. Cheng YH; Hooker RA; Nguyen K; Gerard-O'Riley R; Waning DL; Chitteti BR; Meijome TE; Chua HL; Plett AP; Orschell CM; Srour EF; Mayo LD; Pavalko FM; Bruzzaniti A; Kacena MA J Bone Miner Res; 2013 Jun; 28(6):1434-45. PubMed ID: 23362087 [TBL] [Abstract][Full Text] [Related]
2. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts. Kacena MA; Eleniste PP; Cheng YH; Huang S; Shivanna M; Meijome TE; Mayo LD; Bruzzaniti A J Biol Chem; 2012 May; 287(21):17257-17268. PubMed ID: 22447931 [TBL] [Abstract][Full Text] [Related]
3. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms. Eleniste PP; Patel V; Posritong S; Zero O; Largura H; Cheng YH; Himes ER; Hamilton M; Ekwealor JTB; Kacena MA; Bruzzaniti A J Cell Biochem; 2016 Jun; 117(6):1396-406. PubMed ID: 26552846 [TBL] [Abstract][Full Text] [Related]
4. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells. Cheng YH; Streicher DA; Waning DL; Chitteti BR; Gerard-O'Riley R; Horowitz MC; Bidwell JP; Pavalko FM; Srour EF; Mayo LD; Kacena MA J Cell Physiol; 2015 Mar; 230(3):578-86. PubMed ID: 25160801 [TBL] [Abstract][Full Text] [Related]
5. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Posritong S; Hong JM; Eleniste PP; McIntyre PW; Wu JL; Himes ER; Patel V; Kacena MA; Bruzzaniti A Mol Cell Endocrinol; 2018 Oct; 474():35-47. PubMed ID: 29428397 [TBL] [Abstract][Full Text] [Related]
6. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Ciovacco WA; Goldberg CG; Taylor AF; Lemieux JM; Horowitz MC; Donahue HJ; Kacena MA Bone; 2009 Jan; 44(1):80-6. PubMed ID: 18848655 [TBL] [Abstract][Full Text] [Related]
8. C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. Meijome TE; Ekwealor JTB; Hooker RA; Cheng YH; Ciovacco WA; Balamohan SM; Srinivasan TL; Chitteti BR; Eleniste PP; Horowitz MC; Srour EF; Bruzzaniti A; Fuchs RK; Kacena MA J Cell Biochem; 2016 Apr; 117(4):959-69. PubMed ID: 26375403 [TBL] [Abstract][Full Text] [Related]
9. Megakaryocyte and Osteoblast Interactions Modulate Bone Mass and Hematopoiesis. Alvarez MB; Xu L; Childress PJ; Maupin KA; Mohamad SF; Chitteti BR; Himes E; Olivos DJ; Cheng YH; Conway SJ; Srour EF; Kacena MA Stem Cells Dev; 2018 May; 27(10):671-682. PubMed ID: 29631496 [TBL] [Abstract][Full Text] [Related]
10. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1. Tang Y; Hu M; Xu Y; Chen F; Chen S; Chen M; Qi Y; Shen M; Wang C; Lu Y; Zhang Z; Zeng H; Quan Y; Wang F; Su Y; Zeng D; Wang S; Wang J Theranostics; 2020; 10(5):2229-2242. PubMed ID: 32104505 [No Abstract] [Full Text] [Related]
11. Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. Kacena MA; Shivdasani RA; Wilson K; Xi Y; Troiano N; Nazarian A; Gundberg CM; Bouxsein ML; Lorenzo JA; Horowitz MC J Bone Miner Res; 2004 Apr; 19(4):652-60. PubMed ID: 15005853 [TBL] [Abstract][Full Text] [Related]
12. Megakaryocyte-mediated inhibition of osteoclast development. Kacena MA; Nelson T; Clough ME; Lee SK; Lorenzo JA; Gundberg CM; Horowitz MC Bone; 2006 Nov; 39(5):991-999. PubMed ID: 16782418 [TBL] [Abstract][Full Text] [Related]
13. Pyk2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival. Lim ST; Miller NL; Nam JO; Chen XL; Lim Y; Schlaepfer DD J Biol Chem; 2010 Jan; 285(3):1743-53. PubMed ID: 19880522 [TBL] [Abstract][Full Text] [Related]
14. Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. Olivos DJ; Alvarez M; Cheng YH; Hooker RA; Ciovacco WA; Bethel M; McGough H; Yim C; Chitteti BR; Eleniste PP; Horowitz MC; Srour EF; Bruzzaniti A; Fuchs RK; Kacena MA J Cell Biochem; 2017 Aug; 118(8):2231-2240. PubMed ID: 28067429 [TBL] [Abstract][Full Text] [Related]
15. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Buckbinder L; Crawford DT; Qi H; Ke HZ; Olson LM; Long KR; Bonnette PC; Baumann AP; Hambor JE; Grasser WA; Pan LC; Owen TA; Luzzio MJ; Hulford CA; Gebhard DF; Paralkar VM; Simmons HA; Kath JC; Roberts WG; Smock SL; Guzman-Perez A; Brown TA; Li M Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10619-24. PubMed ID: 17537919 [TBL] [Abstract][Full Text] [Related]
16. Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation. Soves CP; Miller JD; Begun DL; Taichman RS; Hankenson KD; Goldstein SA Bone; 2014 Sep; 66():111-20. PubMed ID: 24882736 [TBL] [Abstract][Full Text] [Related]
18. A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Kacena MA; Gundberg CM; Horowitz MC Bone; 2006 Nov; 39(5):978-984. PubMed ID: 16860008 [TBL] [Abstract][Full Text] [Related]
19. Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. Maupin KA; Himes ER; Plett AP; Chua HL; Singh P; Ghosh J; Mohamad SF; Abeysekera I; Fisher A; Sampson C; Hong JM; Childress P; Alvarez M; Srour EF; Bruzzaniti A; Pelus LM; Orschell CM; Kacena MA Bone; 2019 Oct; 127():452-459. PubMed ID: 31299382 [TBL] [Abstract][Full Text] [Related]
20. GSK-3β negatively regulates megakaryocyte differentiation and platelet production from primary human bone marrow cells in vitro. Ono M; Matsubara Y; Shibano T; Ikeda Y; Murata M Platelets; 2011; 22(3):196-203. PubMed ID: 21231855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]