BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23362318)

  • 1. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.
    Summers ZM; Gralnick JA; Bond DR
    mBio; 2013 Jan; 4(1):e00420-12. PubMed ID: 23362318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.
    Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS
    Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria.
    Keffer JL; McAllister SM; Garber AI; Hallahan BJ; Sutherland MC; Rozovsky S; Chan CS
    mBio; 2021 Aug; 12(4):e0107421. PubMed ID: 34311573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Jain A; Coelho A; Madjarov J; Paquete CM; Gralnick JA
    mBio; 2022 Oct; 13(5):e0215022. PubMed ID: 36106730
    [No Abstract]   [Full Text] [Related]  

  • 5. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer.
    Jakus N; Blackwell N; Osenbrück K; Straub D; Byrne JM; Wang Z; Glöckler D; Elsner M; Lueders T; Grathwohl P; Kleindienst S; Kappler A
    Appl Environ Microbiol; 2021 Jul; 87(16):e0046021. PubMed ID: 34085863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH.
    Sobolev D; Roden EE
    Appl Environ Microbiol; 2001 Mar; 67(3):1328-34. PubMed ID: 11229928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation.
    Chan CS; Fakra SC; Emerson D; Fleming EJ; Edwards KJ
    ISME J; 2011 Apr; 5(4):717-27. PubMed ID: 21107443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.
    Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.
    Chan CH; Levar CE; Jiménez-Otero F; Bond DR
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674067
    [No Abstract]   [Full Text] [Related]  

  • 11. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities.
    Emerson D; Rentz JA; Lilburn TG; Davis RE; Aldrich H; Chan C; Moyer CL
    PLoS One; 2007 Aug; 2(7):e667. PubMed ID: 17668050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Different Putative Outer Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide, or Electrode Reduction by Geobacter sulfurreducens.
    Jiménez Otero F; Chan CH; Bond DR
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria.
    Bennett SA; Toner BM; Barco R; Edwards KJ
    Geobiology; 2014 Mar; 12(2):146-56. PubMed ID: 24428517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.
    Barco RA; Emerson D; Sylvan JB; Orcutt BN; Jacobson Meyers ME; Ramírez GA; Zhong JD; Edwards KJ
    Appl Environ Microbiol; 2015 Sep; 81(17):5927-37. PubMed ID: 26092463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for auxiliary anaerobic metabolism in obligately aerobic Zetaproteobacteria.
    Jain A; Gralnick JA
    ISME J; 2020 Apr; 14(4):1057-1062. PubMed ID: 31969684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of iron-oxidizing bacteria in biocorrosion: a review.
    Emerson D
    Biofouling; 2018 Oct; 34(9):989-1000. PubMed ID: 30642207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment.
    Laufer K; Nordhoff M; Røy H; Schmidt C; Behrens S; Jørgensen BB; Kappler A
    Appl Environ Microbiol; 2015 Dec; 82(5):1433-1447. PubMed ID: 26682861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks.
    Laufer K; Nordhoff M; Halama M; Martinez RE; Obst M; Nowak M; Stryhanyuk H; Richnow HH; Kappler A
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.