These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23362960)

  • 1. DNA origami nanopillars as standards for three-dimensional superresolution microscopy.
    Schmied JJ; Forthmann C; Pibiri E; Lalkens B; Nickels P; Liedl T; Tinnefeld P
    Nano Lett; 2013 Feb; 13(2):781-5. PubMed ID: 23362960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures.
    Raab M; Jusuk I; Molle J; Buhr E; Bodermann B; Bergmann D; Bosse H; Tinnefeld P
    Sci Rep; 2018 Jan; 8(1):1780. PubMed ID: 29379061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Origami: Scaffolds for Creating Higher Order Structures.
    Hong F; Zhang F; Liu Y; Yan H
    Chem Rev; 2017 Oct; 117(20):12584-12640. PubMed ID: 28605177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers.
    Beater S; Holzmeister P; Pibiri E; Lalkens B; Tinnefeld P
    Phys Chem Chem Phys; 2014 Apr; 16(15):6990-6. PubMed ID: 24599511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures.
    Schröder T; Scheible MB; Steiner F; Vogelsang J; Tinnefeld P
    Nano Lett; 2019 Feb; 19(2):1275-1281. PubMed ID: 30681342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami-based standards for quantitative fluorescence microscopy.
    Schmied JJ; Raab M; Forthmann C; Pibiri E; Wünsch B; Dammeyer T; Tinnefeld P
    Nat Protoc; 2014; 9(6):1367-91. PubMed ID: 24833175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
    Zhan P; Dutta PK; Wang P; Song G; Dai M; Zhao SX; Wang ZG; Yin P; Zhang W; Ding B; Ke Y
    ACS Nano; 2017 Feb; 11(2):1172-1179. PubMed ID: 28056172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.
    Shen X; Song C; Wang J; Shi D; Wang Z; Liu N; Ding B
    J Am Chem Soc; 2012 Jan; 134(1):146-9. PubMed ID: 22148355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a 4 zeptoliters switchable 3D DNA box origami.
    Zadegan RM; Jepsen MD; Thomsen KE; Okholm AH; Schaffert DH; Andersen ES; Birkedal V; Kjems J
    ACS Nano; 2012 Nov; 6(11):10050-3. PubMed ID: 23030709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Particle Tracking and Super-Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion and Lattice Assembly of DNA Origami.
    Kempter S; Khmelinskaia A; Strauss MT; Schwille P; Jungmann R; Liedl T; Bae W
    ACS Nano; 2019 Feb; 13(2):996-1002. PubMed ID: 30588792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.
    Pilo-Pais M; Watson A; Demers S; LaBean TH; Finkelstein G
    Nano Lett; 2014; 14(4):2099-104. PubMed ID: 24645937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography.
    Zhang Y; Chao J; Liu H; Wang F; Su S; Liu B; Zhang L; Shi J; Wang L; Huang W; Wang L; Fan C
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8036-40. PubMed ID: 27194406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.
    Kielar C; Xin Y; Shen B; Kostiainen MA; Grundmeier G; Linko V; Keller A
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9470-9474. PubMed ID: 29799663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room Temperature Study of Seeding Growth on Two-Dimensional DNA Nanostructure.
    Ji B; Song J; Wang D; Kenaan A; Zhu Q; Wang J; Sønderskov SM; Dong M
    Langmuir; 2019 Mar; 35(11):4140-4145. PubMed ID: 30715893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.
    Brassat K; Ramakrishnan S; Bürger J; Hanke M; Doostdar M; Lindner JKN; Grundmeier G; Keller A
    Langmuir; 2018 Dec; 34(49):14757-14765. PubMed ID: 29754490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Designed DNA-Origami Nanomaterials for Drug Delivery In Vivo.
    Jiang Q; Liu S; Liu J; Wang ZG; Ding B
    Adv Mater; 2019 Nov; 31(45):e1804785. PubMed ID: 30285296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed-assembly system using DNA jigsaw pieces.
    Endo M; Sugita T; Katsuda Y; Hidaka K; Sugiyama H
    Chemistry; 2010 May; 16(18):5362-8. PubMed ID: 20391568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.