These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23363078)

  • 1. Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces?
    Groten J; Rühe J
    Langmuir; 2013 Mar; 29(11):3765-72. PubMed ID: 23363078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching.
    He Y; Jiang C; Yin H; Chen J; Yuan W
    J Colloid Interface Sci; 2011 Dec; 364(1):219-29. PubMed ID: 21889158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars.
    Huovinen E; Takkunen L; Korpela T; Suvanto M; Pakkanen TT; Pakkanen TA
    Langmuir; 2014 Feb; 30(5):1435-43. PubMed ID: 24483340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.
    Lee JP; Choi S; Park S
    Langmuir; 2011 Jan; 27(2):809-14. PubMed ID: 21162520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.
    Hoshian S; Jokinen V; Somerkivi V; Lokanathan AR; Franssila S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):941-9. PubMed ID: 25522296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.
    Xiu Y; Liu Y; Hess DW; Wong CP
    Nanotechnology; 2010 Apr; 21(15):155705. PubMed ID: 20332558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity.
    Wang G; Liu S; Wei S; Liu Y; Lian J; Jiang Q
    Sci Rep; 2016 Feb; 6():20933. PubMed ID: 26853810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically durable superhydrophobic surfaces.
    Verho T; Bower C; Andrew P; Franssila S; Ikkala O; Ras RH
    Adv Mater; 2011 Feb; 23(5):673-8. PubMed ID: 21274919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation of superhydrophobic and superoleophobic properties upon wear damage.
    Jin H; Tian X; Ikkala O; Ras RH
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):485-8. PubMed ID: 23339565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct imaging of complex nano- to microscale interfaces involving solid, liquid, and gas phases.
    Rykaczewski K; Landin T; Walker ML; Scott JH; Varanasi KK
    ACS Nano; 2012 Oct; 6(10):9326-34. PubMed ID: 23020195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced nanoscale superhydrophobic structures on metal surfaces.
    Jagdheesh R; Pathiraj B; Karatay E; Römer GR; Huis in't Veld AJ
    Langmuir; 2011 Jul; 27(13):8464-9. PubMed ID: 21627133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.
    Peng S; Tian D; Miao X; Yang X; Deng W
    J Colloid Interface Sci; 2013 Nov; 409():18-24. PubMed ID: 23981676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcones and nanograss: toward mechanically robust superhydrophobic surfaces.
    Kondrashov V; Rühe J
    Langmuir; 2014 Apr; 30(15):4342-50. PubMed ID: 24628022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.