These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23363084)

  • 1. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves.
    Mézière F; Muller M; Dobigny B; Bossy E; Derode A
    J Acoust Soc Am; 2013 Feb; 133(2):643-52. PubMed ID: 23363084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of transient wave propagation in a heterogeneous solid layer coupled with fluid: application to long bones.
    Naili S; Nguyen VH; Vu MB; Desceliers C; Soize C
    J Acoust Soc Am; 2015 Feb; 137(2):668-78. PubMed ID: 25698002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1201-10. PubMed ID: 26263571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.
    Dencks S; Schmitz G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1884-95. PubMed ID: 24658719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.
    Inkinen SI; Liukkonen J; Malo MK; Virén T; Jurvelin JS; Töyräs J
    J Acoust Soc Am; 2016 Jul; 140(1):1. PubMed ID: 27475127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate measurement of guided modes in a plate using a bidirectional approach.
    Moreau L; Minonzio JG; Foiret J; Bossy E; Talmant M; Laugier P
    J Acoust Soc Am; 2014 Jan; 135(1):EL15-21. PubMed ID: 24437851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.
    Nagatani Y; Tachibana RO
    J Acoust Soc Am; 2014 Mar; 135(3):1197-206. PubMed ID: 24606262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion.
    Lambert SA; Näsholm SP; Nordsletten D; Michler C; Juge L; Serfaty JM; Bilston L; Guzina B; Holm S; Sinkus R
    Phys Rev Lett; 2015 Aug; 115(9):094301. PubMed ID: 26371655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of two effective medium approaches for predicting sound scattering by periodic arrays of elastic shells.
    Umnova O; Krynkin A; Chong AY; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Nov; 134(5):3619-30. PubMed ID: 24180773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering by single physically large and weak scatterers in the beam of a single-element transducer.
    Kemmerer JP; Oelze ML; Gyöngy M
    J Acoust Soc Am; 2015 Mar; 137(3):1153-63. PubMed ID: 25786931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.
    Morin C; Hellmich C
    Ultrasonics; 2014 Jul; 54(5):1251-69. PubMed ID: 24457030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field evanescent waves scattered from a spatially deterministic and anisotropic medium.
    Li J; Chang L; Wu Z
    Opt Lett; 2015 Jun; 40(12):2680-3. PubMed ID: 26076235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of ultrasound beam formation of baiji (Lipotes vexillifer) with a finite element model.
    Wei C; Zhang Y; Au WW
    J Acoust Soc Am; 2014 Jul; 136(1):423-9. PubMed ID: 24993226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumferential guided wave measurements of a cylindrical fluid-filled bone-mimicking phantom.
    Nauleau P; Grimal Q; Minonzio JG; Laugier P; Prada C
    J Acoust Soc Am; 2014 Feb; 135(2):994-1001. PubMed ID: 25234906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A μCT-based investigation of the influence of tissue modulus variation, anisotropy and inhomogeneity on ultrasound propagation in trabecular bone.
    Pan W; Shen Y; van Lenthe GH
    J Mech Behav Biomed Mater; 2016 Jul; 60():416-424. PubMed ID: 26974585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.