These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model. O'Connor KN; Cai H; Puria S J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482 [TBL] [Abstract][Full Text] [Related]
25. A method to measure sound transmission via the malleus-incus complex. Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362 [TBL] [Abstract][Full Text] [Related]
27. A sum of simple and complex motions on the eardrum and manubrium in gerbil. de La Rochefoucauld O; Olson ES Hear Res; 2010 May; 263(1-2):9-15. PubMed ID: 19878713 [TBL] [Abstract][Full Text] [Related]
28. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467 [TBL] [Abstract][Full Text] [Related]
29. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane. Bergevin C; Olson ES J Acoust Soc Am; 2014 Mar; 135(3):1294-312. PubMed ID: 24606269 [TBL] [Abstract][Full Text] [Related]
30. Acoustic responses of the human middle ear. Voss SE; Rosowski JJ; Merchant SN; Peake WT Hear Res; 2000 Dec; 150(1-2):43-69. PubMed ID: 11077192 [TBL] [Abstract][Full Text] [Related]
31. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Jiang S; Smith K; Gan RZ Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647 [TBL] [Abstract][Full Text] [Related]
33. Numerical model characterization of the sound transmission mechanism in the tympanic membrane from a high-speed digital holographic experiment in transient regime. Garcia-Manrique J; Furlong C; Gonzalez-Herrera A; Cheng JT Acta Biomater; 2023 Mar; 159():63-73. PubMed ID: 36708849 [TBL] [Abstract][Full Text] [Related]
34. Human middle-ear model with compound eardrum and airway branching in mastoid air cells. Keefe DH J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701 [TBL] [Abstract][Full Text] [Related]
35. Effects of tympanic membrane perforation on middle ear transmission in gerbil. Stomackin G; Kidd S; Jung TT; Martin GK; Dong W Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199 [TBL] [Abstract][Full Text] [Related]
36. Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry. Wada H; Ando M; Takeuchi M; Sugawara H; Koike T; Kobayashi T; Hozawa K; Gemma T; Nara M J Acoust Soc Am; 2002 May; 111(5 Pt 1):2189-99. PubMed ID: 12051438 [TBL] [Abstract][Full Text] [Related]
37. Sound pressure distribution within human ear canals: II. Reverse mechanical stimulation. Ravicz ME; Cheng JT; Rosowski JJ J Acoust Soc Am; 2019 Mar; 145(3):1569. PubMed ID: 31067954 [TBL] [Abstract][Full Text] [Related]
38. Sound pressure distribution within natural and artificial human ear canals: forward stimulation. Ravicz ME; Tao Cheng J; Rosowski JJ J Acoust Soc Am; 2014 Dec; 136(6):3132. PubMed ID: 25480061 [TBL] [Abstract][Full Text] [Related]
39. The path of a click stimulus from ear canal to umbo. Milazzo M; Fallah E; Carapezza M; Kumar NS; Lei JH; Olson ES Hear Res; 2017 Mar; 346():1-13. PubMed ID: 28087416 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Chang EW; Cheng JT; Röösli C; Kobler JB; Rosowski JJ; Yun SH Hear Res; 2013 Oct; 304():49-56. PubMed ID: 23811181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]