These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23363118)

  • 1. Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing.
    Schoof T; Green T; Faulkner A; Rosen S
    J Acoust Soc Am; 2013 Feb; 133(2):1017-30. PubMed ID: 23363118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B; Francart T
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise.
    Aronoff JM; Freed DJ; Fisher LM; Pal I; Soli SD
    Ear Hear; 2011; 32(4):468-84. PubMed ID: 21412155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective measure of binaural processing: Acoustic change complex in response to interaural phase differences.
    Fan Y; Gifford RH
    Hear Res; 2024 Jul; 448():109020. PubMed ID: 38763034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of insertion depth on spatial speech perception in noise for simulations of cochlear implants and single-sided deafness.
    Zhou X; Li H; Galvin JJ; Fu QJ; Yuan W
    Int J Audiol; 2017; 56(sup2):S41-S48. PubMed ID: 27367147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
    Gifford RH; Stecker GC
    Hear Res; 2020 May; 390():107929. PubMed ID: 32182551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping frequency coverage and simulated spatial cue effects on bimodal (electrical and acoustical) sentence recognition in noise.
    Green T; Faulkner A; Rosen S
    J Acoust Soc Am; 2014 Feb; 135(2):851-61. PubMed ID: 25234893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization.
    Rana B; Buchholz JM; Morgan C; Sharma M; Weller T; Konganda SA; Shirai K; Kawano A
    Trends Hear; 2017; 21():2331216517722106. PubMed ID: 28752811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing speech perception in noise for 5-year-old children using hearing aids or cochlear implants.
    Ching TY; Zhang VW; Flynn C; Burns L; Button L; Hou S; McGhie K; Van Buynder P
    Int J Audiol; 2018 May; 57(sup2):S70-S80. PubMed ID: 28687057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binaural advantages in users of bimodal and bilateral cochlear implant devices.
    Kokkinakis K; Pak N
    J Acoust Soc Am; 2014 Jan; 135(1):EL47-53. PubMed ID: 24437856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening.
    Ihlefeld A; Litovsky RY
    PLoS One; 2012; 7(9):e45296. PubMed ID: 23028914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of mismatched place-of-stimulation on the salience of binaural cues in conditions that simulate bilateral cochlear-implant listening.
    Goupell MJ; Stoelb C; Kan A; Litovsky RY
    J Acoust Soc Am; 2013 Apr; 133(4):2272-87. PubMed ID: 23556595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Spectral Resolution and Frequency Mismatch on Speech Understanding and Spatial Release From Masking in Simulated Bilateral Cochlear Implants.
    Xu K; Willis S; Gopen Q; Fu QJ
    Ear Hear; 2020; 41(5):1362-1371. PubMed ID: 32132377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech perception, localization, and lateralization with bilateral cochlear implants.
    van Hoesel RJ; Tyler RS
    J Acoust Soc Am; 2003 Mar; 113(3):1617-30. PubMed ID: 12656396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binaural benefit for speech recognition with spectral mismatch across ears in simulated electric hearing.
    Yoon YS; Liu A; Fu QJ
    J Acoust Soc Am; 2011 Aug; 130(2):EL94-100. PubMed ID: 21877777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.