These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23363118)

  • 21. Speech reception with different bilateral directional processing schemes: Influence of binaural hearing, audiometric asymmetry, and acoustic scenario.
    Neher T; Wagener KC; Latzel M
    Hear Res; 2017 Sep; 353():36-48. PubMed ID: 28783570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ; Kreft HA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binaural Perception in Single-Sided Deaf Cochlear Implant Users with Unrestricted or Restricted Acoustic Hearing in the Non-Implanted Ear.
    Dorbeau C; Galvin J; Fu QJ; Legris E; Marx M; Bakhos D
    Audiol Neurootol; 2018; 23(3):187-197. PubMed ID: 30352440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Approaches to Measure Spatial Release From Masking in Children With Bilateral Cochlear Implants.
    Peng ZE; Litovsky RY
    Ear Hear; 2022; 43(1):101-114. PubMed ID: 34133400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments.
    Goldsworthy RL; Delhorne LA; Desloge JG; Braida LD
    J Acoust Soc Am; 2014 Aug; 136(2):867-76. PubMed ID: 25096120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximizing the spectral and temporal benefits of two clinically used sound processing strategies for cochlear implants.
    Won JH; Nie K; Drennan WR; Rubinstein JT
    Trends Amplif; 2012 Dec; 16(4):201-10. PubMed ID: 23264570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Availability of binaural cues for bilateral implant recipients and bimodal listeners with and without preserved hearing in the implanted ear.
    Gifford RH; Dorman MF; Sheffield SW; Teece K; Olund AP
    Audiol Neurootol; 2014; 19(1):57-71. PubMed ID: 24356514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perception and coding of interaural time differences with bilateral cochlear implants.
    Laback B; Egger K; Majdak P
    Hear Res; 2015 Apr; 322():138-50. PubMed ID: 25456088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intelligibility in speech maskers with a binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex.
    Lopez-Poveda EA; Eustaquio-Martín A; Stohl JS; Wolford RD; Schatzer R; Gorospe JM; Ruiz SSC; Benito F; Wilson BS
    Hear Res; 2017 May; 348():134-137. PubMed ID: 28188882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining acoustic and electric stimulation in the service of speech recognition.
    Dorman MF; Gifford RH
    Int J Audiol; 2010 Dec; 49(12):912-9. PubMed ID: 20874053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptual benefit and functional outcomes for children using sequential bilateral cochlear implants.
    Galvin KL; Mok M; Dowell RC
    Ear Hear; 2007 Aug; 28(4):470-82. PubMed ID: 17609610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.
    Cullington HE; Zeng FG
    Ear Hear; 2011 Feb; 32(1):16-30. PubMed ID: 21178567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers.
    Qin MK; Oxenham AJ
    J Acoust Soc Am; 2003 Jul; 114(1):446-54. PubMed ID: 12880055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Simulated Interaural Frequency Mismatch on Speech Understanding and Spatial Release From Masking.
    Goupell MJ; Stoelb CA; Kan A; Litovsky RY
    Ear Hear; 2018; 39(5):895-905. PubMed ID: 29337763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Results using the OPAL strategy in Mandarin speaking cochlear implant recipients.
    Vandali AE; Dawson PW; Arora K
    Int J Audiol; 2017; 56(sup2):S74-S85. PubMed ID: 27329178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.