These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23363220)

  • 1. Flow-induced deformation of poroelastic tissues and gels: a new perspective on equilibrium pressure-flow-thickness relations.
    Quinn TM
    J Biomech Eng; 2013 Jan; 135(1):011009. PubMed ID: 23363220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model.
    Bergomi M; Cugnoni J; Galli M; Botsis J; Belser UC; Wiskott HW
    J Biomech; 2011 Jan; 44(1):34-8. PubMed ID: 20825940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive relations for pressure-driven stiffening in poroelastic tissues.
    Reeve AM; Nash MP; Taberner AJ; Nielsen PM
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24828684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poroelastography: imaging the poroelastic properties of tissues.
    Konofagou EE; Harrigan TP; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2001 Oct; 27(10):1387-97. PubMed ID: 11731052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid and solid mechanics in a poroelastic network induced by ultrasound.
    Wang P; Olbricht WL
    J Biomech; 2011 Jan; 44(1):28-33. PubMed ID: 20817185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loading velocity dependent permeability in agarose gel under compression.
    Liu Q; Subhash G; Moore DF
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):974-82. PubMed ID: 21783107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration.
    Holmes MH; Mow VC
    J Biomech; 1990; 23(11):1145-56. PubMed ID: 2277049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetry of tensile versus compressive elasticity and permeability contributes to the regulation of exchanges in collagen gels.
    Cacheux J; Ordonez-Miranda J; Bancaud A; Jalabert L; Alcaide D; Nomura M; Matsunaga YT
    Sci Adv; 2023 Aug; 9(31):eadf9775. PubMed ID: 37531440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression.
    Holmes MH
    J Biomech Eng; 1986 Nov; 108(4):372-81. PubMed ID: 3795885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanobiology of soft skeletal tissue differentiation--a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications.
    Loboa EG; Wren TA; Beaupré GS; Carter DR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):83-96. PubMed ID: 14586808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A poroviscoelastic description of fibrin gels.
    Noailly J; Van Oosterwyck H; Wilson W; Quinn TM; Ito K
    J Biomech; 2008 Nov; 41(15):3265-9. PubMed ID: 18930461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.