These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23363290)

  • 1. Influence of replacing Si by Ge in the chalcogenide quaternary sulfides Ag2In2Si(Ge)S6 on the chemical bonding, linear and nonlinear optical susceptibilities, and hyperpolarizability.
    Reshak AH; Kityk IV; Parasyuk OV; Kamarudin H; Auluck S
    J Phys Chem B; 2013 Feb; 117(8):2545-53. PubMed ID: 23363290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of linear and nonlinear optical effects of chalcopyrite AgGaX2 (X=S, Se, and Te) crystals.
    Bai L; Lin Z; Wang Z; Chen C; Lee MH
    J Chem Phys; 2004 May; 120(18):8772-8. PubMed ID: 15267809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of the linear and second-order nonlinear susceptibilities of the 3-methyl-4-nitropyridine-1-oxyde (POM) crystal.
    Guillaume M; Botek E; Champagne B; Castet F; Ducasse L
    J Chem Phys; 2004 Oct; 121(15):7390-400. PubMed ID: 15473810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha- and beta-A2Hg3M2S8 (A = K, Rb; M = Ge, Sn): polar quaternary chalcogenides with strong nonlinear optical response.
    Liao JH; Marking GM; Hsu KF; Matsushita Y; Ewbank MD; Borwick R; Cunningham P; Rosker MJ; Kanatzidis MG
    J Am Chem Soc; 2003 Aug; 125(31):9484-93. PubMed ID: 12889979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure surface plasmon resonance enhancement of the first hyperpolarizability of gold core-silver shell nanoparticles.
    Abid JP; Nappa J; Girault HH; Brevet PF
    J Chem Phys; 2004 Dec; 121(24):12577-82. PubMed ID: 15606279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation energies and radiative lifetimes of Ge1-xSix nanocrystals: alloying versus confinement effects.
    Weissker HC; Furthmüller J; Bechstedt F
    Phys Rev Lett; 2003 Feb; 90(8):085501. PubMed ID: 12633435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear optical spectroscopy of suboxides at oxidized Si(111) interfaces.
    Bergfeld S; Braunschweig B; Daum W
    Phys Rev Lett; 2004 Aug; 93(9):097402. PubMed ID: 15447137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the White-Light Generation of [(RSn)
    Dornsiepen E; Dobener F; Chatterjee S; Dehnen S
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):17041-17046. PubMed ID: 31509340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Dependent Density Functional Theory Investigation on the Electronic and Optical Properties of Poly-C,Si,Ge-acenes.
    Mocci P; Malloci G; Bosin A; Cappellini G
    ACS Omega; 2020 Jul; 5(27):16654-16663. PubMed ID: 32685832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-matched third-harmonic generation in mercury-(I)-chloride.
    Schmitzer H; Wagner HP; Dultz W; Kühnelt M
    Appl Opt; 2002 Jan; 41(3):470-4. PubMed ID: 11905573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the CPP size on the nonlinear optical properties of the new necklace-type molecules formed by carborane and [n]Cycloparaphenylenes(n = 8-11).
    Wang L; Liu YL; He D; Chen SH; Li QJ; Zhao YL; Wang MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123108. PubMed ID: 37423097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrum of chi (3)(-3 omega; omega, omega, omega ) in polyacetylene: An application of free-electron laser in nonlinear optical spectroscopy.
    Fann W; Benson S; Madey JM; Etemad S; Baker GL; Kajzar F
    Phys Rev Lett; 1989 Mar; 62(13):1492-1495. PubMed ID: 10039688
    [No Abstract]   [Full Text] [Related]  

  • 13. Size-dependent linear and nonlinear optical responses of silicon clusters.
    Zhong Q
    Phys Chem Chem Phys; 2024 Feb; 26(7):6022-6028. PubMed ID: 38294058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adamantane-type clusters: compounds with a ubiquitous architecture but a wide variety of compositions and unexpected materials properties.
    Rinn N; Rojas-León I; Peerless B; Gowrisankar S; Ziese F; Rosemann NW; Pilgrim WC; Sanna S; Schreiner PR; Dehnen S
    Chem Sci; 2024 Jun; 15(25):9438-9509. PubMed ID: 38939157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy band structure and linear optical properties of Si and Ge strained along the.
    Tserbak C; Theodorou G
    Phys Rev B Condens Matter; 1995 Oct; 52(16):12232-12240. PubMed ID: 9980368
    [No Abstract]   [Full Text] [Related]  

  • 16. Second-harmonic generation in odd-period, strained, (Si)n(Ge)n/Si superlattices and at Si/Ge interfaces.
    Ghahramani E; Moss DJ; Sipe JE
    Phys Rev Lett; 1990 Jun; 64(23):2815-2818. PubMed ID: 10041818
    [No Abstract]   [Full Text] [Related]  

  • 17. Intrinsic temperature-dependent evolutions in the electron-boson spectral density obtained from optical data.
    Hwang J
    Sci Rep; 2016 Mar; 6():23647. PubMed ID: 27029840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear optical properties of strained (Si)n/(Ge)n superlattices on (001) Si substrates.
    Ghahramani E; Moss DJ; Sipe JE
    Phys Rev B Condens Matter; 1990 Mar; 41(8):5112-5125. PubMed ID: 9994369
    [No Abstract]   [Full Text] [Related]  

  • 19. Physical limits on electronic nonlinear molecular susceptibilities.
    Kuzyk MG
    Phys Rev Lett; 2000 Aug; 85(6):1218-21. PubMed ID: 10991516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratum: Linear optical properties of strained (Si)n/(Ge)n superlattices on (001) Si substrates.
    Ghahramani E; Moss DJ; Sipe JE
    Phys Rev B Condens Matter; 1990 Nov; 42(14):9193. PubMed ID: 9995144
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.