These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23363436)

  • 1. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction.
    Zhang Z; Dua R; Zhang L; Zhu H; Zhang H; Wang P
    ACS Nano; 2013 Feb; 7(2):1709-17. PubMed ID: 23363436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications.
    Wang P; Zhao X; Li B
    Opt Express; 2011 Jun; 19(12):11271-9. PubMed ID: 21716357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition.
    Tong X; Yang P; Wang Y; Qin Y; Guo X
    Nanoscale; 2014 Jun; 6(12):6692-700. PubMed ID: 24816496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
    Hou CC; Fu WF; Chen Y
    ChemSusChem; 2016 Aug; 9(16):2069-73. PubMed ID: 27440473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode.
    Zhuang Z; Su X; Yuan H; Sun Q; Xiao D; Choi MM
    Analyst; 2008 Jan; 133(1):126-32. PubMed ID: 18087623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting.
    Li X; Lu W; Dong W; Chen Q; Wu D; Zhou W; Chen L
    Nanoscale; 2013 Jun; 5(12):5257-61. PubMed ID: 23652765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.
    Hwang YJ; Hahn C; Liu B; Yang P
    ACS Nano; 2012 Jun; 6(6):5060-9. PubMed ID: 22621345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance.
    Li M; Zhao R; Su Y; Yang Z; Zhang Y
    Nanoscale; 2016 Apr; 8(16):8559-67. PubMed ID: 26693806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.
    Li Y; Zhang Q; Li J
    Talanta; 2010 Nov; 83(1):162-6. PubMed ID: 21035658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled.
    Huang J; Zhu Y; Yang X; Chen W; Zhou Y; Li C
    Nanoscale; 2015 Jan; 7(2):559-69. PubMed ID: 25415769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.
    Chernomordik BD; Russell HB; Cvelbar U; Jasinski JB; Kumar V; Deutsch T; Sunkara MK
    Nanotechnology; 2012 May; 23(19):194009. PubMed ID: 22539110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays.
    Mumm F; Sikorski P
    Nanotechnology; 2011 Mar; 22(10):105605. PubMed ID: 21289394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brand new 1D branched CuO nanowire arrays for efficient photoelectrochemical water reduction.
    Duan SF; Zhang ZX; Geng YY; Yao XQ; Kan M; Zhao YX; Pan XB; Kang XW; Tao CL; Qin DD
    Dalton Trans; 2018 Oct; 47(41):14566-14572. PubMed ID: 30259045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays.
    Liu D; Shi T; Tang Z; Zhang L; Xi S; Li X; Lai W
    Nanotechnology; 2011 Nov; 22(46):465601. PubMed ID: 22024944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.