BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 2336355)

  • 21. Transcription complex formation at the mouse rDNA promoter involves the stepwise association of four transcription factors and RNA polymerase I.
    Schnapp A; Grummt I
    J Biol Chem; 1991 Dec; 266(36):24588-95. PubMed ID: 1761556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 37-base pair element in the far upstream spacer region can enhance transcription of rat rDNA in vitro and can bind to the core promoter-binding factor(s).
    Garg LC; Dixit A; Jacob ST
    J Biol Chem; 1989 Jan; 264(1):220-4. PubMed ID: 2642473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eukaryotic RNA polymerase I promoter binding is directed by protein contacts with transcription initiation factor and is DNA sequence-independent.
    Kownin P; Bateman E; Paule MR
    Cell; 1987 Aug; 50(5):693-9. PubMed ID: 3113736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of repetitive and non-repetitive rat rDNA enhancer elements on in vivo transcription by RNA polymerases I and II.
    Ghosh AK; Kermekchiev M; Jacob ST
    Gene; 1994 Apr; 141(2):271-5. PubMed ID: 8163201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter.
    Clos J; Buttgereit D; Grummt I
    Proc Natl Acad Sci U S A; 1986 Feb; 83(3):604-8. PubMed ID: 3456157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements.
    Tower J; Henderson SL; Dougherty KM; Wejksnora PJ; Sollner-Webb B
    Mol Cell Biol; 1989 Apr; 9(4):1513-25. PubMed ID: 2725513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High initiation rates at the ribosomal gene promoter do not depend upon spacer transcription.
    Labhart P; Reeder RH
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3155-8. PubMed ID: 2470092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in.
    Henderson SL; Ryan K; Sollner-Webb B
    Genes Dev; 1989 Feb; 3(2):212-23. PubMed ID: 2714649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rat ribosomal RNA gene can utilize primate RNA polymerase I transcription machinery: lack of absolute species specificity in rDNA transcription.
    Ghosh AK; Niu H; Jacob ST
    Biochem Biophys Res Commun; 1996 Aug; 225(3):890-5. PubMed ID: 8780707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of ribosomal DNA transcription by insulin.
    Hannan KM; Rothblum LI; Jefferson LS
    Am J Physiol; 1998 Jul; 275(1):C130-8. PubMed ID: 9688843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis.
    Bell SP; Learned RM; Jantzen HM; Tjian R
    Science; 1988 Sep; 241(4870):1192-7. PubMed ID: 3413483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cis-acting sequence within the rat ribosomal DNA enhancer region can modulate RNA polymerase II-directed transcription of the metallothionein I gene in vitro.
    Dixit A; Garg LC; Jacob ST
    DNA; 1989 Jun; 8(5):311-20. PubMed ID: 2766929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Termination of transcription by yeast RNA polymerase I.
    van der Sande CA; Kulkens T; Kramer AB; de Wijs IJ; van Heerikhuizen H; Klootwijk J; Planta RJ
    Nucleic Acids Res; 1989 Nov; 17(22):9127-46. PubMed ID: 2685755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A transcriptional terminator is a novel element of the promoter of the mouse ribosomal RNA gene.
    Henderson S; Sollner-Webb B
    Cell; 1986 Dec; 47(6):891-900. PubMed ID: 3779844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fission yeast contains an rDNA binding activity that interacts specifically with regulatory sequences for ribosomal RNA synthesis.
    Guo A; Chen L; Zhao A; Boukghalter B; Pape L
    Gene; 2000 Jan; 242(1-2):183-92. PubMed ID: 10721711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nontranscribed spacer sequences promote in vitro transcription of Drosophila ribosomal DNA.
    Kohorn BD; Rae PM
    Nucleic Acids Res; 1982 Nov; 10(21):6879-86. PubMed ID: 6817304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional role for the nontranscribed spacer of rat ribosomal DNA.
    Cassidy BG; Yang-Yen HF; Rothblum LI
    Mol Cell Biol; 1986 Aug; 6(8):2766-73. PubMed ID: 3023948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional domains of the rDNA promoter display a differential recognition in Leishmania.
    de Andrade Stempliuk V; Floeter-Winter LM
    Int J Parasitol; 2002 Apr; 32(4):437-47. PubMed ID: 11849640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA melting and promoter clearance by eukaryotic RNA polymerase I.
    Kahl BF; Li H; Paule MR
    J Mol Biol; 2000 May; 299(1):75-89. PubMed ID: 10860723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription.
    Panov KI; Friedrich JK; Zomerdijk JC
    Mol Cell Biol; 2001 Apr; 21(8):2641-9. PubMed ID: 11283244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.