These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23364241)

  • 1. Electronic properties of pure and p-type doped hexagonal sheets and zigzag nanoribbons of InP.
    Longo RC; Carrete J; Alemany MM; Gallego LJ
    J Phys Condens Matter; 2013 Feb; 25(8):085506. PubMed ID: 23364241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and electronic properties of zigzag InP nanoribbons with Stone-Wales type defects.
    Longo RC; Carrete J; Varela LM; Gallego LJ
    J Phys Condens Matter; 2016 Feb; 28(6):065503. PubMed ID: 26792795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling on the size dependent properties of InP quantum dots: a hybrid functional study.
    Cho E; Jang H; Lee J; Jang E
    Nanotechnology; 2013 May; 24(21):215201. PubMed ID: 23619206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires.
    Wallentin J; Mergenthaler K; Ek M; Wallenberg LR; Samuelson L; Deppert K; Pistol ME; Borgström MT
    Nano Lett; 2011 Jun; 11(6):2286-90. PubMed ID: 21604708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half-metallic zigzag carbon nanotube dots.
    Hod O; Scuseria GE
    ACS Nano; 2008 Nov; 2(11):2243-9. PubMed ID: 19206389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF
    Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Stark effect in double-stranded porphyrin ladder polymers.
    Pramanik A; Kang HS
    J Chem Phys; 2011 Mar; 134(9):094702. PubMed ID: 21384992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and electronic properties of pristine and Ni-doped Si, Ge, and Sn sheets.
    Manjanath A; Kumar V; Singh AK
    Phys Chem Chem Phys; 2014 Jan; 16(4):1667-71. PubMed ID: 24322985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexagonal geometric patterns formed by radial pore growth of InP based on Voronoi tessellation.
    Asoh H; Iwata J; Ono S
    Nanotechnology; 2012 Jun; 23(21):215304. PubMed ID: 22551644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural transition in indium phosphide nanowires.
    Kitauchi Y; Kobayashi Y; Tomioka K; Hara S; Hiruma K; Fukui T; Motohisa J
    Nano Lett; 2010 May; 10(5):1699-703. PubMed ID: 20387797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between crystal phase purity and radial growth in InP nanowires.
    Poole PJ; Dalacu D; Wu X; Lapointe J; Mnaymneh K
    Nanotechnology; 2012 Sep; 23(38):385205. PubMed ID: 22948129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron trapping in InP nanowire FETs with stacking faults.
    Wallentin J; Ek M; Wallenberg LR; Samuelson L; Borgström MT
    Nano Lett; 2012 Jan; 12(1):151-5. PubMed ID: 22149329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of nitrogen doping of carbon nanoribbons: edge effects.
    Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J
    J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface chemistry, structure, and electronic properties from microns to the atomic scale of axially doped semiconductor nanowires.
    Hjort M; Wallentin J; Timm R; Zakharov AA; Håkanson U; Andersen JN; Lundgren E; Samuelson L; Borgström MT; Mikkelsen A
    ACS Nano; 2012 Nov; 6(11):9679-89. PubMed ID: 23062066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field effects on armchair MoS2 nanoribbons.
    Dolui K; Pemmaraju CD; Sanvito S
    ACS Nano; 2012 Jun; 6(6):4823-34. PubMed ID: 22546015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.