These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. Martínez-Esteso MJ; Vilella-Antón MT; Pedreño MÁ; Valero ML; Bru-Martínez R BMC Plant Biol; 2013 Oct; 13():167. PubMed ID: 24152288 [TBL] [Abstract][Full Text] [Related]
4. Comparative Metabolic Profiling of Grape Skin Tissue along Grapevine Berry Developmental Stages Reveals Systematic Influences of Root Restriction on Skin Metabolome. Duan S; Wu Y; Fu R; Wang L; Chen Y; Xu W; Zhang C; Ma C; Shi J; Wang S Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30695987 [TBL] [Abstract][Full Text] [Related]
5. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
6. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
8. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. Sweetman C; Wong DC; Ford CM; Drew DP BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855 [TBL] [Abstract][Full Text] [Related]
10. Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits. Thomas TR; Matthews MA; Shackel KA Plant Cell Environ; 2006 May; 29(5):993-1001. PubMed ID: 17087481 [TBL] [Abstract][Full Text] [Related]
11. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. Sun RZ; Cheng G; Li Q; Zhu YR; Zhang X; Wang Y; He YN; Li SY; He L; Chen W; Pan QH; Duan CQ; Wang J BMC Plant Biol; 2019 Dec; 19(1):583. PubMed ID: 31878879 [TBL] [Abstract][Full Text] [Related]
12. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968 [TBL] [Abstract][Full Text] [Related]
13. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
14. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development. Shangguan L; Mu Q; Fang X; Zhang K; Jia H; Li X; Bao Y; Fang J PLoS One; 2017; 12(1):e0170571. PubMed ID: 28118385 [TBL] [Abstract][Full Text] [Related]
15. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299 [TBL] [Abstract][Full Text] [Related]
16. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism. Wang L; Sun X; Weiszmann J; Weckwerth W Front Plant Sci; 2017; 8():1066. PubMed ID: 28713396 [TBL] [Abstract][Full Text] [Related]
17. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
19. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M; Matthews M; Shackel K J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. Sharathchandra RG; Stander C; Jacobson D; Ndimba B; Vivier MA PLoS One; 2011 Feb; 6(2):e14708. PubMed ID: 21379583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]