BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 23365048)

  • 1. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach.
    Ercolani E; Del Gaudio C; Bianco A
    J Tissue Eng Regen Med; 2015 Aug; 9(8):861-88. PubMed ID: 23365048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biomaterials and vascular grafts].
    Xiang P; Li M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1420-4. PubMed ID: 21375008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.
    Bagnasco DS; Ballarin FM; Cymberknop LJ; Balay G; Negreira C; Abraham GA; Armentano RL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():446-54. PubMed ID: 25491850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model.
    Roh JD; Nelson GN; Brennan MP; Mirensky TL; Yi T; Hazlett TF; Tellides G; Sinusas AJ; Pober JS; Saltzman WM; Kyriakides TR; Breuer CK
    Biomaterials; 2008 Apr; 29(10):1454-63. PubMed ID: 18164056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering.
    Cont L; Grant D; Scotchford C; Todea M; Popa C
    J Biomater Appl; 2013 Feb; 27(6):707-16. PubMed ID: 22071352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue factor activity and ECM-related gene expression in human aortic endothelial cells grown on electrospun biohybrid scaffolds.
    Han J; Gerstenhaber JA; Lazarovici P; Lelkes PI
    Biomacromolecules; 2013 May; 14(5):1338-48. PubMed ID: 23560456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning.
    Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG
    Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering.
    Zhu C; Ma X; Xian L; Zhou Y; Fan D
    Biomed Mater Eng; 2014; 24(6):1999-2005. PubMed ID: 25226896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts.
    Caracciolo PC; Rial-Hermida MI; Montini-Ballarin F; Abraham GA; Concheiro A; Alvarez-Lorenzo C
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1115-1127. PubMed ID: 28415397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.
    Trinca RB; Abraham GA; Felisberti MI
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A; Colombus S; Krishnan VK; Krishnan LK
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the natural history of extracellular matrix production in tissue-engineered vascular grafts during neovessel formation.
    Naito Y; Williams-Fritze M; Duncan DR; Church SN; Hibino N; Madri JA; Humphrey JD; Shinoka T; Breuer CK
    Cells Tissues Organs; 2012; 195(1-2):60-72. PubMed ID: 21996715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds.
    Akbari S; Mohebbi-Kalhori D; Samimi A
    J Biomater Appl; 2020 May; 34(10):1355-1367. PubMed ID: 32148156
    [No Abstract]   [Full Text] [Related]  

  • 19. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts.
    Sell SA; McClure MJ; Barnes CP; Knapp DC; Walpoth BH; Simpson DG; Bowlin GL
    Biomed Mater; 2006 Jun; 1(2):72-80. PubMed ID: 18460759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.